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Functor

A type that has the Functor property comes with a function:

𝑎 → 𝑏 → 𝐹 𝑎 → 𝐹 𝑏

called fmap.

fmap takes a function, and a value with a context and applies 
the function inside that context. Graphically:

a
𝑎 → 𝑏

b
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λ

Functor

Almost everything in programming is
(or could be in C++) a functor...

• All containers           like std::vector

• Many helper objects like std::future
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λ

Functor

Especially with containers, you may want to think of map as the 
following:

Example:

𝐹(𝑎): std::vector<int>

𝑓: 𝑎 → 𝑏: std::string f(int x)
{

return std::to_string(x);
}

𝐹(𝑏): std::vector<std::string>
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λ

Functor

map must satisfy the following relations:

map id = id mapping the identity does nothing

map f ∘ g = map f ∘ (map g) map is distributive with composition
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Functor

The map is an interface of a type template, like 
std::vector<T>.

In C++ map may be implemented for std::vector<T> like this:

template<typename Func, typename A,
typename B = typename std::result_of<Func(A)>::type>

std::vector<B> map( Func f, std::vector<A> const& va )
{

std::vector<B> res(va.size());
std::transform(va.cbegin(), va.cend(), res.cbegin(), f);
return res;

}

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

6



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

A useful generalization is to extend map to multiple arguments:

This is called zip:

𝑎 → 𝑏 → 𝑐 → 𝐹 𝑎 → 𝐹 𝑏 → 𝐹 𝑐

It takes a binary function, two containers, and return one 
container.
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Functor, Applicative, Monad

Two other similar concepts, extending the construction:

Functor’s map was:

Applicative:
the function is also in a context:

Monad:
The function returns a context:
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Applicative

Applicative extends Functor with:

pure: a -> F a

apply: F (a->b) -> F a -> F b

pure packages a pure value inside such a context.

Without applicative’s apply (that is an extension of map),
it is not possible to apply a packed function to the packed 
argument
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λ

Monad

Monad extends Applicative with:

return: a -> F a

bind: F a -> (a -> F b) -> F b

return is an analogue of Applicative’s pure:
it packages a pure value inside a context.

bind extends apply such that
when the function get applied inside the context,
the result will not get double packaged like this:
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λ

Monad

Applicatives can be chained (not like Functors)
but they always get evaluated.

Monads can be chained too, but the functions have the 
possibility to short-circuit the evaluation
by choosing the state of the context it returns!

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

11



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Monad

Haskell’s complete I/O system is built using Monads.

The monadic state represents e.g. the state of a keyboard, and 
the functions that extract characters return new context each 
time that represents the new state (e.g. key pressed).
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Functor, Applicative, Monad

Sum and Product type combinators and composition interacts 
with these concepts as follows:

• Functor preserves all three
(sum of functors is a functor, same for prod and comp.)

• Applicative only closed for product and composition

• Monad is only closed for product types.
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λ

Functor, Applicative, Monad

Where these constructs and algebraic properties come from?

Category theory...   It works!
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Functor, Applicative, Monad

An intuitive explanation if you still need it:

Functor, Applicative, Monad explained

„How to learn about Monads:
1. Get a PhD in computer science.

2. Throw it away because you don’t need it for this section!”
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Functor, Applicative, Monad

It is sad, that functional programming is completely alien in the 
C++ committee.

This leads to awkward situations,
like reinventing the wheel
in a slow and painful manner...

Link, video
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λ

More...

This was just the tip of the iceberg...
We’ve not even implemented a linear algebra library so far 
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Foldable

The Foldable concept necessities a following function on a type 
(container):

𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

Called foldl.

What it is good for?
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λ

Foldable

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

foldl takes a binary function 𝑓,
a zero element of type 𝑎,
and a container of types 𝑏,
and aggregates the container by the 
repeated application of 𝑓.
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λ

Foldable

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

foldl can be used to calculate sums, products, min, max, avg, etc.
on containers.

The signature in C++ would be like:

template<typename Func,
typename A,
typename B>

A foldl( Func f, A zero, std::vector<B> const& fa );

usage:
sum: foldl( [](B a, B b){ return a+b; }, (B)0, fa );
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λ

Foldable

Note: it can be observed, that the requirements are a slight 
generalizations of a monoid!

foldl: 𝑎 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑎 → 𝑎

This is the monoid binary operation

This is the unit element of the monoid
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λ

Foldable

Note: it can be observed, that the requirements are a slight 
generalizations of a monoid!

So we could say also that:

foldl: 𝑀 𝑎 → 𝐹 𝑎 → 𝑎

Where 𝑀 is a monoid structure over type 𝑎
(the analogue of the underlying set)
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λ

Foldable

Note 2.: why is it called foldl? Because there is a foldr!

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎 inspects from left

foldr: 𝑏 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎 inspects from right
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λ

Map, Fold, Zip

Why this is good for us?

We can implement the basic linear algebra operations (and much 
more) by using just map, fold, zip

• add/subtract matrices, vectors? It’s just a zip

• multiply, divide by scalars? It’s just a map

• dot product?   foldl (+) 0 (zip (*) u v)

• matrix-multiplication?
View the matrix as a container of rows/cols, that have map, fold, 
zip, and then it is simply a map of dot.
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And now, category theory kicks in

In category theory,
concepts come in pairs…

And pairs of pairs 
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Unfolds

Things can be reversed and looked the other way.
Consider folds:

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎
consumes from left

Dual:

unfoldr: 𝑎 → (𝑏, 𝑎 ) → 𝑎 → 𝐹 𝑏, 𝑎
produces to right

The zero element changes role: 

it will be called „the seed”
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λ

Unfolds

Things can be reversed and looked the other way.
Consider folds:

foldr: 𝑏 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎
consumes from right

Dual:

unfoldl: 𝑎 → (𝑎, 𝑏 ) → 𝑎 → 𝑎, 𝐹 𝑏
produces to left
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λ

Folds, Unfolds
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λ

Folds, Unfolds

Nice, but there is a problem... The termination guarantees are also 
changed:

folds finish, when the container is exhausted.

When unfolds finish?
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λ

Folds, Unfolds

Nice, but there is a problem... The termination guarantees are also 
changed:

folds finish, when the container is exhausted.

When unfolds finish?      NEVER!
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λ

Unfolds

Unfolds generate infinite structures.
You cannot ever ask for the whole structure.

However, we always need a finite portion of it at the end...

Remember Lazy Evaluation? We can have unfolds in the expression 
trees, until we do not take all of their values in the end.

Usually there is a function like take, that retrieves the first n 
elements of a structure. If we compose this somewhere after an 
unfold, we are safe.
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λ

Unfolds

What are unfolds good for?

Well, they are usually the ones that create the vectors, matrices 
etc. for you (except when you write out all the elements yourself)

• Initialize to a specific number all items in container

• Read data from file and construct a container from it

• Generate sequence of elements

• Generate random numbers

• Etc.
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λ

In fold, we always did the same thing at each step.

What if we could do different things at each application where we 
need to apply a binary function?
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λ

Hell starts to break loose...
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λ

Catamorphisms

Catamorphisms generalize fold:

• Instead of a simple container,
we have a recursive datatype (call it tree)

• Instead one function we have 𝑛

• Instead of one type in the container, we have a Sum type (!) of 𝑛
elements.

And we have:
cata alg tree = alg ∘ map cata alg ∘ unfix tree

What???
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λ

Catamorphisms

Catamorphisms generalize fold:

• Instead of a simple container,
we have a recursive datatype (call it tree)

• Instead one function we have 𝑛

• Instead of one type in the container, we have a Sum type (!) of 𝑛
elements.

And we have:
cata alg tree = alg ∘ map cata alg ∘ unfix tree

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

36



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Simple recursive datatype: a List of type a elements.
(think of it as a template with 1 parameter: typename a)

A list may be empty: List a = Empty or

may contain 1 element: a or

may contain 2 elements: a, a or ...

may contain 3 elements: a, a, a    etc...

It looks like a recursion, isn’t it?
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λ

Catamorphisms

Simple recursive datatype: a List of type a elements.

A list may be empty: List a = Empty or

may contain 1 element: a or

may contain 2 elements: a, a or ...

may contain 3 elements: a, a, a    etc...

It looks like a recursion, isn’t it?

Let’s do the same thing, like we did for the factorial:

A new argument will represent the recursive symbol, and we’ll use 

the Y-combinator to tie the knot.

Think of it as tuples

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

38



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Simple recursive datatype: a List of type a elements.

A list may be empty: List_proto self a = Empty or
may contain 1 element of a and a type s: a, self

And now: List a = Y ( List_proto self a )

Writing out the recursion:

Empty

a, Empty self = Empty

a, (a, Empty) self = List_proto Empty a

a, (a, (a, Empty)) self = List_proto (List_proto Empty a)    etc...

Self!

Think of it as a pair: 

(a, self)
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λ

Catamorphisms

Recursion may happen at the type level, thus we can describe 
repeating infinite structures, like trees.

These can be defined by creating a parametric (templated) non 
recursive type, and making it recursive by applying the fix-point 
combinatory on it.
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λ

Catamorphisms

Now we have trees, what do we do on them?

The recursive type has a condition hidden in the sum type:

List a = Empty or (a, self)

When doing whatever on a tree, we should be prepared to handle 
both cases: in this case two functions are needed.

But! To be meaningful, they must return the same type!
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λ

Catamorphisms

Consuming the structure:
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λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case
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λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case

Function 2

returning something on (a, self) case

But the self part is already processed by Function 1.
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λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case

Function 2

returning something on (a, self) case

But the self part is already processed by Function 1.

Again Function 2

returning something on (a, self) case

But the self part is already processed by Function 2.
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λ

Catamorphisms

Consuming the structure:

The concept is known in 
Category Theory as F-Algebras

The set of functions that handle 
the different cases in the Sum 
type, is called algebra

The common return type that the 
functions share is called the 
carrier type of the algebra.

Function 1

Function 2

Function 2
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λ

Catamorphisms

Consuming the structure:

The function, that takes a 
recursive type, and an algebra 
and consumes the structure by 
applying the algebra recursively 
is called:

Catamorphism:

The algebra

cata alg tree = alg ∘ map cata alg ∘ unfix tree
The recursive type
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λ

Catamorphisms

Catamorphism:

Of course,
cata returns
the carrier type

Reveal the type of 

the structure one 

level deeper

cata alg tree = alg ∘ map cata alg ∘ unfix tree

Recursively 

evaluate the 

deeper levels

Evaluate the 

current level
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λ

Catamorphisms

Not going into the details the following can be implemented in C++

template<typename A, template<typename> F>
auto cata(A algebra, Fix<F> tree)->typename A::Carrier
{
return algebra( map( [&]( auto subtree )
{

return cata<A, F>(algebra, subtree);
}, unfix(tree) ) );

}
This is actual code!

cata alg tree = alg ∘ map cata alg ∘ unfix tree
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λ

Catamorphisms

What can we do with catamorphisms?
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λ

Catamorphisms

What can we do with catamorphisms?

Evaluate and transform any tree-like recursive structure!

Stuff like:

• Evaluating, transforming expression trees

• Writing trees to streams (file, network)

• Everything that folds can do, but much much more.

In fact: folds are the special cases of catamorphisms,
where the algebra has only one element.
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λ

Catamorphisms

The Boost library has a part, called Boost proto, that implements 
embedded domain specific languages inside C++.
It is a large and complex C++ library.

It was noted by Bartosz Milewski, that it may be significantly 
simplified by using F-algebras. The main developer of Boost Proto, 
Eric Niebler is credited by doing the first implementation in C++.

We managed to simplify it even more, down to around 200 lines.
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λ

Catamorphisms

Oh, and there is more!
Catamorphisms compose (in a special, but useful case)!

𝑓: 𝐹 𝑎 → 𝑎
ℎ: 𝐺 𝑎 → 𝐹 𝑎

cata f ∘ cata fix ∘ h = cata (f ∘ h)

This makes it possible to merge two traversals of the tree into a 
single one. This is widely used in optimization passes in functional 
compilers.
There are also compositions of algebras...

An algebra

A tree transformation 
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More morphisms

What about duals?

The dual of catamorphism is an anamorphism:

It takes a seed and recursively generates a tree structure
by applying a co-algebra...

Examples:

• reading a tree structure from file to memory (XML, json, HTML etc)

ana coalg seed = fix ∘ map ana coalg ∘ coalg seed
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More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• numerical integration schemes

• Merge sort (divide-and-conquer algorithms)

• Certain program optimization strategies
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More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• Merge sort in 5 tokens:

msort = hylo merge unflatten
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More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• Merge sort in 5 tokens:

msort = hylo merge unflatten
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Merge two sorted lists 

(branch in the tree)

Generate a 

tree level by 

splitting in two
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More morphisms

Paramorphisms:
like factorial: eats its argument, but keep it too
(generally: any subresult)

certain optimizations cannot work for these kinds of recursive 
functions, precisely because they have different algebraic properties

Dual: apomorhisms…
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The zoo-of-morphisms

So when this is going to end?????
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The zoo-of-morphisms

A collection of recursion schemes is assembled from the literature by 
Edward Kmett and implemented in Haskell.

Fold Schemes Description

Catamorphism Consume structure

level by level

Paramorphism Consume with primitive 

recursion

Zygomorphism Consume with the aid of a 

helper function

Histomorphism Consume, possibly multiple 

levels at once

Prepromorphism Consume, by repeatedly 

applying a natural 

transformation

Unfold Schemes Description

Anamorphism Create structure level by level

Apomorphism Create structure, may stop and

return with a branch or level

Futumorphism Create structure, possibly

multiple levels at once

Postpro-

morphism

Create, by repeatedly applying 

a natural transformation
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http://comonad.com/reader/2009/recursion-schemes/
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The zoo-of-morphisms

Okay, but why on Earth?
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The zoo-of-morphisms

The reason is nothing complicated...

Precisely the same way we moved from
goto to for loops and then to algorithms...

We less likely to make a mistake, easier to read, 
comprehend, manipulate, reason about.
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The zoo-of-morphisms

C / C++ Functional 

goto Y-combinator based recursion

for loops folds / unfolds

std::algorithms structured recursion schemes
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Outlook
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Outlook
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Outlook
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The correspondences does not and at Curry-Howard...

Logic Type Theory C++

Conjunction Product type ~ struct

Disjunction Sum type ~ union+enum

Implication Function type R f( A… )

Implication 

introduction

Function definition R f(A a, A b){ return a*b; }

Implication 

elimination

Function call f(a, b);
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The correspondences does not and at Curry-Howard...

http://arxiv.org/abs/0903.0340

http://arxiv.org/abs/0903.0340
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The correspondences does not and at Curry-Howard...

http://arxiv.org/abs/0903.0340

http://arxiv.org/abs/0903.0340
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Introductory readings for the interested:

• Philip Wadler
• Propositions as Types, and other writings

• Benjamin C. Pierce – Types and Programming Languages

• Bob Coecke - Introducing categories to the practicing physicist 

• Michael Barr, Charles Wells – Category Theory for Computing Science

• John C. Baez
• Physics, Topology, Logic and Computation: A Rosetta Stone

• A Prehistory of n-Categorical Physics

• Eric Meijer
Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/history.html#propositions-as-types
http://www.cis.upenn.edu/~bcpierce
http://arxiv.org/abs/0808.1032
http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0908.2469
https://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-2qDG-qnJAhVJBiwKHRAFBzEQFggfMAA&url=http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf&usg=AFQjCNFPFhD-q-LO6GEes1o0nZZluhZR2g&sig2=kR0ZYQqmBvK0sowN8k0LCw
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Recommended reading to get used to functional languages:

Learn you a Haskell for great good!

Tim Williams: Recursion Schemes by Example Video

If you want to know how to base mathematics on homotopy type theory: link

If you want to know how to base physics along same lines: link video

http://learnyouahaskell.com/
https://github.com/willtim/recursion-schemes/raw/master/slides-final.pdf
https://www.youtube.com/watch?v=Zw9KeP3OzpU
http://homotopytypetheory.org/
http://arxiv.org/abs/1310.7930
https://www.youtube.com/watch?v=I6zNik0SggM

