(uisner

GPU Lab

Functional Programming

or applied deep magic

Lectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Functor Wisner

GPU Lab

A type that has the Functor property comes with a function:
(a->b)>Fa—-Fb
called fmap.

fmap takes a function, and a value with a context and applies
the function inside that context. Graphically:

sulwwe.gold jeuol3puny

a—b

2] - o]

SO

25 Nov 2015 2

Functor isner

GPU Lab

Almost everything in programming is
(or could be in C++) a functor...

sulwwe.gold jeuol3puny

 All containers like std: :vector
* Many helper objects like std: :future

SO

25 Nov 2015 3

Functor Wimrar

Especially with containers, you may want to think of map as the
following:

Example: alaja] —-2=2 [bIblb g

F(a): std::vector<int> ug

fra—>b: std::string f(int x) 5
i return std::to_string(x);

SO

F(b): std::vector<std: :string>

25 Nov 2015 4

Functor Wimrar

map must satisfy the following relations:

map id = id mapping the identity does nothing

sulwwe.gold jeuol3puny

map (fe g) = (map f) o (map g) map is distributive with composition

SO

25 Nov 2015 5

Functor Wisner

GPU Lab

The map is an interface of a type template, like
std: :vector<T>.

In C++ map may be implemented for std: :vector<T> like this:

template<typename Func, typename A,

typename B = typename std::result of<Func(A)>::type>
std::vector map(Func f, std::vector<A> const& va)

{

sulwwe.gold jeuol3puny

std::vector res(va.size());

std: :transform(va.cbegin(), va.cend(), res.cbegin(), f);
return res;

SO

25 Nov 2015 6

Functor iisner

GPU Lab

A useful generalization is to extend map to multiple arguments:

This is called zip:

alalal f: a—b—c
blblb g

(a >b->c)»Fa-Fb-Fc

C|C|C

sulwwe.gold jeuol3puny

It takes a binary function, two containers, and return one
container.

SO

25 Nov 2015 7

Functor, Applicative, Monad

Two other similar concepts, extending the construction:

Functor’s map was:

Applicative:
the function is also in a context:

Monad:
The function returns a context:

d

f:a=b _

f:a—>b‘

b

25 Nov 2015

(uisner

GPU Lab

sulwwe.gold jeuol3puny

SO

Applicative Wisnar

GPU Lab

Applicative extends Functor with:
pure: a -> F a o
apply: F (a->b) -> Fa -> F b a ~ b

pure packages a pure value inside such a context.

sulwwe.gold jeuol3puny

Without applicative’s apply (that is an extension of map),

it is not possible to apply a packed function to the packed
argument

SO

25 Nov 2015 9

Monad

Monad extends Applicative with:

return: a -> F a f

. d—

bind: F a -> (a -> Fb) ->FDb d

return is an analogue of Applicative’s pure:
it packages a pure value inside a context.

bind extends apply such that
when the function get applied inside the context,
the result will not get double packaged like this:

25 Nov 2015

(uisner

GPU Lab

sulwwe.gold jeuol3puny

SO

10

Monad Qisner

GPU Lab

Applicatives can be chained (not like Functors)
but they always get evaluated.

sulwwe.gold jeuol3puny

Monads can be chained too, but the functions have the
possibility to short-circuit the evaluation
by choosing the state of the context it returns!

d | -

N

|

L
=y
o

25 Nov 2015 11

Monad QWisner

GPU Lab

Haskell’s complete 1/0 system is built using Monads.

The monadic state represents e.g. the state of a keyboard, and
the functions that extract characters return new context each
time that represents the new state (e.g. key pressed).

sulwwe.gold jeuol3puny

SO

25 Nov 2015 12

Functor, Applicative, Monad Qisner

GPU Lab

Sum and Product type combinators and composition interacts
with these concepts as follows:

* Functor preserves all three
(sum of functors is a functor, same for prod and comp.)

 Applicative only closed for product and composition
* Monad is only closed for product types.

sulwwe.gold jeuol3puny

SO

25 Nov 2015 13

Functor, Applicative, Monad Qisner

GPU Lab

Where these constructs and algebraic properties come from?

sulwwe.gold jeuol3puny

Category theory... It works!

Functor, Applicative, Monad Qisner

GPU Lab

An intuitive explanation if you still need it:

Functor, Applicative, Monad explained

,How to learn about Monads:
1. Get a PhD in computer science.
2. Throw it away because you don’t need it for this section!”

sulwwe.gold jeuol3puny

SO

25 Nov 2015 15

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

Functor, Applicative, Monad Wimnar

It is sad, that functional programming is completely alien in the
C++ committee.

This leads to awkward situations,
like reinventing the wheel
in a slow and painful manner...

STD=FUTURESHOULD BE -

sulwwe.gold jeuol3puny

Link, video

SO

25 Nov 2015 16

http://bartoszmilewski.com/2014/02/26/c17-i-see-a-monad-in-your-future/
https://www.youtube.com/watch?v=BFnhhPehpKw

More Wisnar

GPU Lab

This was just the tip of the iceberg...
We’ve not even implemented a linear algebra library so far ©

sulwwe.gold jeuol3puny

‘ ‘,

:".’

‘ -~
X -
\
0 4

4 ; /
!

/ \¢
{ - W

‘s

SO

25 Nov 2015 17

Foldable Wienar

GPU Lab

The Foldable concept necessities a following function on a type
(container):

(a>b—->a)—>a >Fb-a
Called foldl.

sulwwe.gold jeuol3puny

What it is good for?

SO

25 Nov 2015 18

Foldable

foldl: (a-»>b—>a)—>a >Fb—-a

foldl takes a binary function f,

a zero element of type a,

and a container of types b,

and aggregates the container by the
repeated application of f.

25 Nov 2015

(uisner

GPU Lab

sulwwe.gold jeuol3puny

SO

19

Foldable QWisner

GPU Lab

foldl: (a—»>b—>a)—->a »>Fb-a

foldl can be used to calculate sums, products, min, max, avg, etc.
on containers.

The signature in C++ would be like:

template<typename Func,
typename A,
typename B>

A foldl(Func f, A zero, std::vector const& fa);

sulwwe.gold jeuol3puny

usage:
sum: foldl([](B a, B b){ return a+b; }, (B)O, fa);

SO

25 Nov 2015 20

Foldable Wisner

GPU Lab

Note: it can be observed, that the requirements are a slight
generalizations of a monoid!

foldl: (a—»>a—a)—»a >Fa-a
\ \

\

This is the monoid binary operation

sulwwe.gold jeuol3puny

This is the unit element of the monoid

SO

25 Nov 2015 21

Foldable Wiwnar

Note: it can be observed, that the requirements are a slight
generalizations of a monoid!

So we could say also that:

foldl: Ma »Fa—- a

sulwwe.gold jeuol3puny

Where M is a monoid structure over type a
(the analogue of the underlying set)

SO

25 Nov 2015 22

Foldable QWisner

GPU Lab

Note 2.: why is it called foldl? Because there is a foldr!

foldl: (a—=b—>a) »>a — Fb — a inspects from left E,
foldr: (b > a—a) —>a — Fb — a inspects from right §_:
al [blblb plblb] [2
f:a—b—a \f/ f:b—a—a \f/ |
a a @
\f 74
a a
b i

SO

25 Nov 2015 23

Map, Fold, Zip Wimrar

GPU Lab

Why this is good for us?

We can implement the basic linear algebra operations (and much
more) by using just map, fold, zip

« add/subtract matrices, vectors? It’s just a zip
» multiply, divide by scalars? It’s just a map
« dot product? foldl (+) © (zip (*) u v)

» matrix-multiplication?
View the matrix as a container of rows/cols, that have map, fold,
Zip, and then it is simply a map of dot.

sulwwe.gold jeuol3puny

SO

25 Nov 2015 24

And now, category theory kicks in Wisner

GPU Lab

- DUALITIES
Q p)

In category theory, ‘~'

concepts come in pairs...

1“ ’
And pairs of pairs © ' \? ‘

-
DUALITIES|EVERYWHERE }\

25 Nov 2015

sulwwe.gold jeuol3puny

25

Unfolds Wimrar

GPU Lab

Things can be reversed and looked the other way.
Consider folds: al b
f: a—b—a \f/

a

foldl: (a—»>b—-a)—>a >Fb-a \f
consumes from left

sulwwe.gold jeuol3puny

Dual: bbbl [a a
unfoldr: (a —» (b, a)) »>a - (Fb, a) f:a—(b,a)

produces to right 3
N A

The zero element changes role: a

it will be called ,,the seed” \

<
X

SO

d 25 Nov 2015 26

Unfolds @isner

GPU Lab

Things can be reversed and looked the other way. bibjb] |2
Consider folds: f:b—a—a \f/ .
a 2
foldr: (b»a—-a)—=a >Fb—-a f/ B
consumes from right a 3
yf/ 0
3
a =
Dual: f:a—(a,b) [a] [blblb .
unfoldl: (a —» (a, b)) > a — (a, Fb) \f/ A
produces to left 3 /
\f

SO

25 Nov 2015 27
d

Folds, Unfolds Wianar

a] |bjbjb blbilb] |a

f:a—b—a \f/ f:b—a—a \f/
a a 3
Af 74 2
a a 5
\fir vf/ 3
a a @
Q
3
bibib| |a f:a—(a,b =1
fra—(b,a) 1Y Ng/ a—(a.b) a\f/P Pl @

a a
f/ S

SN
Q)
Q

_ 7

25 Nov 2015 28

Folds, Unfolds Wianar

Nice, but there is a problem... The termination guarantees are also
changed:

sulwwe.gold jeuol3puny

folds finish, when the container is exhausted.

When unfolds finish?

SO

25 Nov 2015 29

Folds, Unfolds Wianar

Nice, but there is a problem... The termination guarantees are also
changed:

sulwwe.gold jeuol3puny

folds finish, when the container is exhausted.

When unfolds finish? NEVER!

SO

25 Nov 2015 30

Unfolds

Unfolds generate infinite structures.
You cannot ever ask for the whole structure.

However, we always need a finite portion of it at the end...

Remember Lazy Evaluation? We can have unfolds in the expression
trees, until we do not take all of their values in the end.

Usually there is a function like take, that retrieves the first n

elements of a structure. If we compose this somewhere after an
unfold, we are safe.

25 Nov 2015

(uisner

GPU Lab

sulwwe.gold jeuol3puny

SO

31

Unfolds Qisner

GPU Lab

What are unfolds good for?

Well, they are usually the ones that create the vectors, matrices
etc. for you (except when you write out all the elements yourself)

* [Initialize to a specific humber all items in container
* Read data from file and construct a container from it
* Generate sequence of elements

» Generate random numbers

* Etc.

sulwwe.gold jeuol3puny

SO

25 Nov 2015 32

(uisner

GPU Lab

In fold, we always did the same thing at each step.

What if we could do different things at each application where we
need to apply a binary function?

sulwwe.gold jeuol3puny

SO

25 Nov 2015 33

(uisner

GPU Lab

Hell starts to break loose...

sulwwe.gold jeuol3puny

WHEN YOU FIND THE DOOR TO HELL

25 Nov 2015

SO

34

Catamorphisms wisner

GPU Lab

Catamorphisms generalize fold:

* Instead of a simple container,
we have a recursive datatype (call it tree)

e Instead one function we have n

* Instead of one type in the container, we have a Sum type (!) of n
elements.

sulwwe.gold jeuol3puny

And we have:
cata alg tree = alg o map (cata alg) o unfix tree

SO

What???

25 Nov 2015 35

Catamorphisms wisner

GPU Lab

Catamorphisms generalize fold:

* Instead of a simple container,
we have a recursive datatype (call it tree)

e Instead one function we have n

* Instead of one type in the container, we have a Sum type (!) of n
elements.

sulwwe.gold jeuol3puny

SO

25 Nov 2015 36

Catamorphisms wisner

GPU Lab

Simple recursive datatype: a List of type a elements.
(think of it as a template with 1 parameter: typename a)

.
A list may be empty: List a = Empty or g
may contain 1 element: 2 or S
may contain 2 elements: a, a or ... 3_3
may contain 3 elements: a, a, a etc... "§

=,

R

It looks like a recursion, isn’t it?

SO

25 Nov 2015 37

Catamorphisms wisner

GPU Lab

Simple recursive datatype: a List of type a elements.

A list may be empty: List a = Empty or Z
may contain 1 element: a or :
may contain 2 elements: a, a or ... 5
. U

may contain 3 elements: a, a,._a etc... S
2

=,

R

It looks like a recursion, isn’t it? Think of it as tuples
Let’s do the same thing, like we did for the factorial:

A new argument will represent the recursive symbol, and we’ll use
the Y-combinator to tie the knot.

SO

25 Nov 2015 38

Catamorphisms wisner

GPU Lab

Simple recursive datatype: a List of type a elements. Self!
A list may be empty: List proto self a = Empty or
may contain 1 element of a and a type s: a, self

And now: List a =Y (List_proto self a)

sulwwe.gold jeuol3puny

Writing out the recursion: . . .
Think of it as a pair:

Empty (a, self)

a, Empty self = Empty

a, (a, Empty) self = List_proto Empty a }\
a, (a, (a, Empty)) self = List_proto (List_proto Empty a) etc...

25 Nov 2015 39

Catamorphisms wisner

GPU Lab

Recursion may happen at the type level, thus we can describe
repeating infinite structures, like trees.

sulwwe.gold jeuol3puny

These can be defined by creating a parametric (templated) non
recursive type, and making it recursive by applying the fix-point
combinatory on it.

SO

25 Nov 2015 40

Catamorphisms wisner

GPU Lab

Now we have trees, what do we do on them?

The recursive type has a condition hidden in the sum type:

List a = Empty or (a, self)

sulwwe.gold jeuol3puny

When doing whatever on a tree, we should be prepared to handle
both cases: in this case two functions are needed.

But! To be meaningful, they must return the same type!

SO

25 Nov 2015 41

Catamorphisms wisner

GPU Lab

Consuming the structure:

)
c

- |

| o)

/ N\ 2
- |

o

a , v
/\ 3

va

o

4 S
5.

va

/\

al |Empty

SO

25 Nov 2015

A
N

Catamorphisms wisner

GPU Lab

Consuming the structure:

/N

) ;

/ \ Function 1
5 \/returm’ng something on Empty case

al |Empty

sulwwe.gold jeuol3puny

SO

25 Nov 2015 43

Catamorphisms wisner

GPU Lab

Consuming the structure:

Function 2
returning something on (a, self) case

-
: But the self part is already processed by Function 1. §
/N g
a) ?
/ \ Function 1 &

3 returning something on Empty case 5

’ 3

E

Empty

SO

25 Nov 2015 44

Catamorphisms wisner

GPU Lab

Consuming the structure:

Again Function 2

returning something on (a, self) case -
,\/ But the self part is already processed by Function 2. §
(@)
3 / Function 2 5
: returning something on (a, self) case 3
/ \/ But the self part is already processed by Function 1 S
a , E
/ ~ Function 1 =
\4— returning something on Empty case =
al |Empty

SO

25 Nov 2015 45

Catamorphisms wisner

GPU Lab

Consuming the structure:

The concept is known in Function 2 g
Category Theory as F-Algebras /\/ 2
The set of functions that handle 2 | /Funcuon 7l s
the different cases in the Sum / \ :
type, is called algebra a , El

The common return type that the
functions share is called the }\

carrier type of the algebra.

25 Nov 2015 46

Catamorphisms wisner

GPU Lab

Consuming the structure:

\ ;
The function, that takes a a/ , 5l
recursive type, and an algebra 7/ \ s
and consumes the structure by a , .
applying the algebra recursively VAN :
is called: 3 Empty 3

Catamorphism:
The algebra

/ /The recursive type
cata alg tree = alg o map (cata alg) o unfix tree

SO

25 Nov 2015 47

Catamorphisms wisner

GPU Lab

Catamorphism: a/ A g
/ N\
=
cata alg tree = alg o map (cata alg) o unfix tree d ! 3
/N :
al |Empty E}
va
Of course, . Reveal the type of
cata returns Evaluate the Recursively the structure one
the carrier type current level ~ €valuate the level deeper
deeper levels

25 Nov 2015 48

Catamorphisms wisner

GPU Lab

cata alg tree = alg o map (cata alg) o unfix tree

Not going into the details the following can be implemented in C++

template<typename A, template<typename> F>
auto cata(A algebra, Fix<F> tree)->typename A::Carrier

{
return algebra(map([&](auto subtree)

{
return cata<A, F>(algebra, subtree);

} }» unfix(tree))); This is actual code!

sulwwe.gold jeuol3puny

SO

25 Nov 2015 49

Catamorphisms wisner

GPU Lab

What can we do with catamorphisms?

sulwwe.gold jeuol3puny

SO

25 Nov 2015 50

Catamorphisms wisner

GPU Lab

What can we do with catamorphisms?

Evaluate and transform any tree-like recursive structure!

Stuff like:

 Evaluating, transforming expression trees

* Writing trees to streams (file, network)
 Everything that folds can do, but much much more.

sulwwe.gold jeuol3puny

In fact: folds are the special cases of catamorphisms,
where the algebra has only one element.

SO

25 Nov 2015 51

Catamorphisms

The Boost library has a part, called Boost proto, that implements
embedded domain specific languages inside C++.
It is a large and complex C++ library.

It was noted by Bartosz Milewski, that it may be significantly
simplified by using F-algebras. The main developer of Boost Proto,
Eric Niebler is credited by doing the first implementation in C++.

We managed to simplify it even more, down to around 200 lines.

25 Nov 2015

(uisner

GPU Lab

sulwwe.gold jeuol3puny

SO

52

http://www.boost.org/doc/libs/1_59_0/doc/html/proto.html
http://bartoszmilewski.com/2013/06/10/understanding-f-algebras/
http://ericniebler.com/2013/07/16/f-algebras-and-c/

Catamorphisms wisner

GPU Lab

Oh, and there is more!
Catamorphisms compose (in a special, but useful case)!

/ An algebra
f: Fa - a /Atree transformation
h: Ga - Fa

cataf o cata (fixo h) = cata (fo h)

sulwwe.gold jeuol3puny

This makes it possible to merge two traversals of the tree into a
single one. This is widely used in optimization passes in functional
compilers.

There are also compositions of algebras...

SO

25 Nov 2015 53

More morphisms wisner

GPU Lab

What about duals?
The dual of catamorphism is an anamorphism:

ana coalg seed = fix o map (ana coalg) o coalg seed

It takes a seed and recursively generates a tree structure
by applying a co-algebra...

sulwwe.gold jeuol3puny

Examples:
 reading a tree structure from file to memory (XML, json, HTML etc)

SO

25 Nov 2015 54

More morphisms Wisnar

Compositions:

* Hylomorphisms:
composition of an anamorphism and a catamorphism

The first builds, the second immediately consumes the structure
without temporaries

sulwwe.gold jeuol3puny

Examples:

* numerical integration schemes

* Merge sort (divide-and-conquer algorithms)
« Certain program optimization strategies

SO

25 Nov 2015 55

More morphisms wisner

GPU Lab

Compositions:

* Hylomorphisms:
composition of an anamorphism and a catamorphism

The first builds, the second immediately consumes the structure
without temporaries

sulwwe.gold jeuol3puny

Examples:

* Merge sort in 5 tokens:
msort = hylo merge unflatten

SO

25 Nov 2015 56

More morphisms Wisnar

Compositions:

-
c

* Hylomorphisms: 3
composition of an anamorphism and a catamorphism 5
The first builds, the second immediately consumes the structure o
without temporaries u§
3

Merge two sorted lists Generate a g

Examples: (branch in the tree) tree level by ua

splitting in two
* Merge sort in 5 tokens: /
msort = hylo merge unflatten

SO

25 Nov 2015 57

More morphisms Wisnar

Paramorphisms:
like factorial: eats its argument, but keep it too
(generally: any subresult)

certain optimizations cannot work for these kinds of recursive
functions, precisely because they have different algebraic properties

sulwwe.gold jeuol3puny

Dual: apomorhismes...

SO

25 Nov 2015 58

The zoo-of-morphisms ﬁﬁ?fbr

So when this is going to end?????

sulwwe.gold jeuol3puny

25 Nov 2015 59

The zoo-of-morphisms @Eﬁ?fhr

A collection of recursion schemes is assembled from the literature by

Edward Kmett and implemented in Haskell.

-

Catamorphism Consume structure Anamorphism Create structure level by level §
level by level %

Paramorphism Consume with primitive Apomorphism Create structure, may stop and u-:;
recursion return with a branch or level =

Zygomorphism Consume with the aid of a 2
helper function -

Histomorphism Consume, possibly multiple Futumorphism Create structure, possibly
levels at once multiple levels at once

Prepromorphism Consume, by repeatedly Postpro- Create, by repeatedly applying
applying a natural morphism a natural transformation
transformation

25 Nov 2015 60

http://comonad.com/reader/2009/recursion-schemes/

The zoo-of-morphisms Wiener

GPU Lab

Okay, but why on Earth?

sulwwe.gold jeuol3puny

SO

25 Nov 2015

o
-

The zoo-of-morphisms Wisnar

GPU Lab

The reason is nothing complicated...

Precisely the same way we moved from
goto to for loops and then to algorithms...

sulwwe.gold jeuol3puny

We less likely to make a mistake, easier to read,
comprehend, manipulate, reason about.

SO

25 Nov 2015

o
N

The zoo-of-morphisms qé'i'ﬁ?fb'

.
goto Y-combinator based recursion 2
for loops folds / unfolds E
std::algorithms structured recursion schemes

SO

D. Berényi - M. F. Nagy-Egri 25 Nov 2015 63

Outlook Wisner

GPU Lab

Outlook

sulwwe.gold jeuol3puny

SO

25 Nov 2015 64

Outlook ﬁﬁ?aebr

The correspondences does not and at Curry-Howard...

!
a
Logic | Type Theory
- |
Conjunction Product type ~ struct %
Disjunction Sum type ~ union+enum 06;
Implication Function type Rf(A..) §
Implication Function definition R f(A a, Ab){ return a*b; } §
introduction -
Implication Function call f(a, b);
elimination

25 Nov 2015 65

Outlook

The correspondences does not and at Curry-Howard...

Category Theory Physics Topology Logic Computation -
object X Hilbert space X manifold X proposition .Y data type X =
morphism operator cobordism proof program g'-
ffX—=7Y ffX->7Y [X—=7Y ffX—=7Y ffX->7Y o
tensor product Hilbert space disjoint union conjunction product 5
of objects: of joint system: of manifolds: of propositions: of data types: Q
XeY XY XeY XeY XY g
tensor product of parallel disjomnt union of | proofs carried out | programs executing e
morphisms: f® g | processes: f®g | cobordisms: f®g | mparallel: f®g in parallel: f®g u5°'
internal hom: Hilbert space of disjoint union of conditional function type:
X—oY ‘anti-X and Y’: | orientation-reversed proposition: X—oY
Xr'eY NXand V: X" ®7Y X—oY

Table 4: The Rosetta Stone (larger version)

(uisner

GPU Lab

http://arxiv.org/abs/0903.0340

25 Nov 2015 66

http://arxiv.org/abs/0903.0340

Outlook

The correspondences does not and at Curry-Howard...

Category Theory Physics Topology Logic Computation -
object X Hilbert space X manifold X proposition .Y data type X =
morphism operator cobordism proof program g'-
ffX—=7Y ffX->7Y [X—=7Y ffX—=7Y ffX->7Y o
tensor product Hilbert space disjoint union conjunction product 5
of objects: of joint system: of manifolds: of propositions: of data types: Q
XeY XY XeY XeY XY g
tensor product of parallel disjomnt union of | proofs carried out | programs executing e
morphisms: f® g | processes: f®g | cobordisms: f®g | mparallel: f®g in parallel: f®g u5°'
internal hom: Hilbert space of disjoint union of conditional function type:
X—oY ‘anti-X and Y’: | orientation-reversed proposition: X—oY
Xr'eY NXand V: X" ®7Y X—oY

Table 4: The Rosetta Stone (larger version)

(uisner

GPU Lab

http://arxiv.org/abs/0903.0340

25 Nov 2015 67

http://arxiv.org/abs/0903.0340

Outlook ?Eﬁl;.laebr

Introductory readings for the interested:

Philip Wadler
* Propositions as Types, and other writings

Benjamin C. Pierce - Types and Programming Languages
Bob Coecke - Introducing categories to the practicing physicist
Michael Barr, Charles Wells - Category Theory for Computing Science

« John C. Baez
* Physics, Topology, Logic and Computation: A Rosetta Stone
* A Prehistory of n-Categorical Physics

sulwwe.gold jeuol3puny

* Eric Meijer
Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire

SO

25 Nov 2015 68

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/history.html#propositions-as-types
http://www.cis.upenn.edu/~bcpierce
http://arxiv.org/abs/0808.1032
http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0908.2469
https://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-2qDG-qnJAhVJBiwKHRAFBzEQFggfMAA&url=http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf&usg=AFQjCNFPFhD-q-LO6GEes1o0nZZluhZR2g&sig2=kR0ZYQqmBvK0sowN8k0LCw

Outlook @Eﬁ?aebr

Recommended reading to get used to functional languages:

Learn you a Haskell for great good!

Tim Williams: Recursion Schemes by Example Video

sulwwe.gold jeuol3puny

If you want to know how to base mathematics on homotopy type theory: link

If you want to know how to base physics along same lines: link video

SO

25 Nov 2015 69

http://learnyouahaskell.com/
https://github.com/willtim/recursion-schemes/raw/master/slides-final.pdf
https://www.youtube.com/watch?v=Zw9KeP3OzpU
http://homotopytypetheory.org/
http://arxiv.org/abs/1310.7930
https://www.youtube.com/watch?v=I6zNik0SggM

