
GPU Lab

D. Berényi – M. F. Nagy-Egri

λLectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Functional Programming

or applied deep magic

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

A type that has the Functor property comes with a function:

𝑎 → 𝑏 → 𝐹 𝑎 → 𝐹 𝑏

called fmap.

fmap takes a function, and a value with a context and applies
the function inside that context. Graphically:

a
𝑎 → 𝑏

b

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

2

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

Almost everything in programming is
(or could be in C++) a functor...

• All containers like std::vector

• Many helper objects like std::future

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

3

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

Especially with containers, you may want to think of map as the
following:

Example:

𝐹(𝑎): std::vector<int>

𝑓: 𝑎 → 𝑏: std::string f(int x)
{

return std::to_string(x);
}

𝐹(𝑏): std::vector<std::string>

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

4

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

map must satisfy the following relations:

map id = id mapping the identity does nothing

map f ∘ g = map f ∘ (map g) map is distributive with composition

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

5

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

The map is an interface of a type template, like
std::vector<T>.

In C++ map may be implemented for std::vector<T> like this:

template<typename Func, typename A,
typename B = typename std::result_of<Func(A)>::type>

std::vector map(Func f, std::vector<A> const& va)
{

std::vector res(va.size());
std::transform(va.cbegin(), va.cend(), res.cbegin(), f);
return res;

}

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

6

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor

A useful generalization is to extend map to multiple arguments:

This is called zip:

𝑎 → 𝑏 → 𝑐 → 𝐹 𝑎 → 𝐹 𝑏 → 𝐹 𝑐

It takes a binary function, two containers, and return one
container.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

7

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor, Applicative, Monad

Two other similar concepts, extending the construction:

Functor’s map was:

Applicative:
the function is also in a context:

Monad:
The function returns a context:

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

8

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Applicative

Applicative extends Functor with:

pure: a -> F a

apply: F (a->b) -> F a -> F b

pure packages a pure value inside such a context.

Without applicative’s apply (that is an extension of map),
it is not possible to apply a packed function to the packed
argument

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

9

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Monad

Monad extends Applicative with:

return: a -> F a

bind: F a -> (a -> F b) -> F b

return is an analogue of Applicative’s pure:
it packages a pure value inside a context.

bind extends apply such that
when the function get applied inside the context,
the result will not get double packaged like this:

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

10

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Monad

Applicatives can be chained (not like Functors)
but they always get evaluated.

Monads can be chained too, but the functions have the
possibility to short-circuit the evaluation
by choosing the state of the context it returns!

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

11

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Monad

Haskell’s complete I/O system is built using Monads.

The monadic state represents e.g. the state of a keyboard, and
the functions that extract characters return new context each
time that represents the new state (e.g. key pressed).

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

12

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor, Applicative, Monad

Sum and Product type combinators and composition interacts
with these concepts as follows:

• Functor preserves all three
(sum of functors is a functor, same for prod and comp.)

• Applicative only closed for product and composition

• Monad is only closed for product types.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

13

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor, Applicative, Monad

Where these constructs and algebraic properties come from?

Category theory... It works!

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

14

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor, Applicative, Monad

An intuitive explanation if you still need it:

Functor, Applicative, Monad explained

„How to learn about Monads:
1. Get a PhD in computer science.

2. Throw it away because you don’t need it for this section!”

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

15

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Functor, Applicative, Monad

It is sad, that functional programming is completely alien in the
C++ committee.

This leads to awkward situations,
like reinventing the wheel
in a slow and painful manner...

Link, video

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

16

http://bartoszmilewski.com/2014/02/26/c17-i-see-a-monad-in-your-future/
https://www.youtube.com/watch?v=BFnhhPehpKw

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More...

This was just the tip of the iceberg...
We’ve not even implemented a linear algebra library so far 

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

17

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

The Foldable concept necessities a following function on a type
(container):

𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

Called foldl.

What it is good for?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

18

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

foldl takes a binary function 𝑓,
a zero element of type 𝑎,
and a container of types 𝑏,
and aggregates the container by the
repeated application of 𝑓.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

19

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎

foldl can be used to calculate sums, products, min, max, avg, etc.
on containers.

The signature in C++ would be like:

template<typename Func,
typename A,
typename B>

A foldl(Func f, A zero, std::vector const& fa);

usage:
sum: foldl([](B a, B b){ return a+b; }, (B)0, fa);

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

20

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

Note: it can be observed, that the requirements are a slight
generalizations of a monoid!

foldl: 𝑎 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑎 → 𝑎

This is the monoid binary operation

This is the unit element of the monoid

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

21

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

Note: it can be observed, that the requirements are a slight
generalizations of a monoid!

So we could say also that:

foldl: 𝑀 𝑎 → 𝐹 𝑎 → 𝑎

Where 𝑀 is a monoid structure over type 𝑎
(the analogue of the underlying set)

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

22

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Foldable

Note 2.: why is it called foldl? Because there is a foldr!

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎 inspects from left

foldr: 𝑏 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎 inspects from right

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

23

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Map, Fold, Zip

Why this is good for us?

We can implement the basic linear algebra operations (and much
more) by using just map, fold, zip

• add/subtract matrices, vectors? It’s just a zip

• multiply, divide by scalars? It’s just a map

• dot product? foldl (+) 0 (zip (*) u v)

• matrix-multiplication?
View the matrix as a container of rows/cols, that have map, fold,
zip, and then it is simply a map of dot.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

24

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

And now, category theory kicks in

In category theory,
concepts come in pairs…

And pairs of pairs 

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

25

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Unfolds

Things can be reversed and looked the other way.
Consider folds:

foldl: 𝑎 → 𝑏 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎
consumes from left

Dual:

unfoldr: 𝑎 → (𝑏, 𝑎) → 𝑎 → 𝐹 𝑏, 𝑎
produces to right

The zero element changes role:

it will be called „the seed”

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

26

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Unfolds

Things can be reversed and looked the other way.
Consider folds:

foldr: 𝑏 → 𝑎 → 𝑎 → 𝑎 → 𝐹 𝑏 → 𝑎
consumes from right

Dual:

unfoldl: 𝑎 → (𝑎, 𝑏) → 𝑎 → 𝑎, 𝐹 𝑏
produces to left

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

27

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Folds, Unfolds

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

28

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Folds, Unfolds

Nice, but there is a problem... The termination guarantees are also
changed:

folds finish, when the container is exhausted.

When unfolds finish?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

29

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Folds, Unfolds

Nice, but there is a problem... The termination guarantees are also
changed:

folds finish, when the container is exhausted.

When unfolds finish? NEVER!

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

30

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Unfolds

Unfolds generate infinite structures.
You cannot ever ask for the whole structure.

However, we always need a finite portion of it at the end...

Remember Lazy Evaluation? We can have unfolds in the expression
trees, until we do not take all of their values in the end.

Usually there is a function like take, that retrieves the first n
elements of a structure. If we compose this somewhere after an
unfold, we are safe.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

31

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Unfolds

What are unfolds good for?

Well, they are usually the ones that create the vectors, matrices
etc. for you (except when you write out all the elements yourself)

• Initialize to a specific number all items in container

• Read data from file and construct a container from it

• Generate sequence of elements

• Generate random numbers

• Etc.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

32

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

In fold, we always did the same thing at each step.

What if we could do different things at each application where we
need to apply a binary function?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

33

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Hell starts to break loose...

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

34

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Catamorphisms generalize fold:

• Instead of a simple container,
we have a recursive datatype (call it tree)

• Instead one function we have 𝑛

• Instead of one type in the container, we have a Sum type (!) of 𝑛
elements.

And we have:
cata alg tree = alg ∘ map cata alg ∘ unfix tree

What???

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

35

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Catamorphisms generalize fold:

• Instead of a simple container,
we have a recursive datatype (call it tree)

• Instead one function we have 𝑛

• Instead of one type in the container, we have a Sum type (!) of 𝑛
elements.

And we have:
cata alg tree = alg ∘ map cata alg ∘ unfix tree

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

36

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Simple recursive datatype: a List of type a elements.
(think of it as a template with 1 parameter: typename a)

A list may be empty: List a = Empty or

may contain 1 element: a or

may contain 2 elements: a, a or ...

may contain 3 elements: a, a, a etc...

It looks like a recursion, isn’t it?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

37

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Simple recursive datatype: a List of type a elements.

A list may be empty: List a = Empty or

may contain 1 element: a or

may contain 2 elements: a, a or ...

may contain 3 elements: a, a, a etc...

It looks like a recursion, isn’t it?

Let’s do the same thing, like we did for the factorial:

A new argument will represent the recursive symbol, and we’ll use

the Y-combinator to tie the knot.

Think of it as tuples

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

38

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Simple recursive datatype: a List of type a elements.

A list may be empty: List_proto self a = Empty or
may contain 1 element of a and a type s: a, self

And now: List a = Y (List_proto self a)

Writing out the recursion:

Empty

a, Empty self = Empty

a, (a, Empty) self = List_proto Empty a

a, (a, (a, Empty)) self = List_proto (List_proto Empty a) etc...

Self!

Think of it as a pair:

(a, self)

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

39

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Recursion may happen at the type level, thus we can describe
repeating infinite structures, like trees.

These can be defined by creating a parametric (templated) non
recursive type, and making it recursive by applying the fix-point
combinatory on it.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

40

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Now we have trees, what do we do on them?

The recursive type has a condition hidden in the sum type:

List a = Empty or (a, self)

When doing whatever on a tree, we should be prepared to handle
both cases: in this case two functions are needed.

But! To be meaningful, they must return the same type!

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

41

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

42

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

43

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case

Function 2

returning something on (a, self) case

But the self part is already processed by Function 1.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

44

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

Function 1

returning something on Empty case

Function 2

returning something on (a, self) case

But the self part is already processed by Function 1.

Again Function 2

returning something on (a, self) case

But the self part is already processed by Function 2.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

45

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

The concept is known in
Category Theory as F-Algebras

The set of functions that handle
the different cases in the Sum
type, is called algebra

The common return type that the
functions share is called the
carrier type of the algebra.

Function 1

Function 2

Function 2

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

46

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Consuming the structure:

The function, that takes a
recursive type, and an algebra
and consumes the structure by
applying the algebra recursively
is called:

Catamorphism:

The algebra

cata alg tree = alg ∘ map cata alg ∘ unfix tree
The recursive type

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

47

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Catamorphism:

Of course,
cata returns
the carrier type

Reveal the type of

the structure one

level deeper

cata alg tree = alg ∘ map cata alg ∘ unfix tree

Recursively

evaluate the

deeper levels

Evaluate the

current level

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

48

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Not going into the details the following can be implemented in C++

template<typename A, template<typename> F>
auto cata(A algebra, Fix<F> tree)->typename A::Carrier
{
return algebra(map([&](auto subtree)
{

return cata<A, F>(algebra, subtree);
}, unfix(tree)));

}
This is actual code!

cata alg tree = alg ∘ map cata alg ∘ unfix tree

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

49

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

What can we do with catamorphisms?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

50

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

What can we do with catamorphisms?

Evaluate and transform any tree-like recursive structure!

Stuff like:

• Evaluating, transforming expression trees

• Writing trees to streams (file, network)

• Everything that folds can do, but much much more.

In fact: folds are the special cases of catamorphisms,
where the algebra has only one element.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

51

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

The Boost library has a part, called Boost proto, that implements
embedded domain specific languages inside C++.
It is a large and complex C++ library.

It was noted by Bartosz Milewski, that it may be significantly
simplified by using F-algebras. The main developer of Boost Proto,
Eric Niebler is credited by doing the first implementation in C++.

We managed to simplify it even more, down to around 200 lines.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

52

http://www.boost.org/doc/libs/1_59_0/doc/html/proto.html
http://bartoszmilewski.com/2013/06/10/understanding-f-algebras/
http://ericniebler.com/2013/07/16/f-algebras-and-c/

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Catamorphisms

Oh, and there is more!
Catamorphisms compose (in a special, but useful case)!

𝑓: 𝐹 𝑎 → 𝑎
ℎ: 𝐺 𝑎 → 𝐹 𝑎

cata f ∘ cata fix ∘ h = cata (f ∘ h)

This makes it possible to merge two traversals of the tree into a
single one. This is widely used in optimization passes in functional
compilers.
There are also compositions of algebras...

An algebra

A tree transformation

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

53

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More morphisms

What about duals?

The dual of catamorphism is an anamorphism:

It takes a seed and recursively generates a tree structure
by applying a co-algebra...

Examples:

• reading a tree structure from file to memory (XML, json, HTML etc)

ana coalg seed = fix ∘ map ana coalg ∘ coalg seed

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

54

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• numerical integration schemes

• Merge sort (divide-and-conquer algorithms)

• Certain program optimization strategies

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

55

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• Merge sort in 5 tokens:

msort = hylo merge unflatten

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

56

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More morphisms

Compositions:

• Hylomorphisms:
composition of an anamorphism and a catamorphism
The first builds, the second immediately consumes the structure
without temporaries

Examples:

• Merge sort in 5 tokens:

msort = hylo merge unflatten

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

57

Merge two sorted lists

(branch in the tree)

Generate a

tree level by

splitting in two

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

More morphisms

Paramorphisms:
like factorial: eats its argument, but keep it too
(generally: any subresult)

certain optimizations cannot work for these kinds of recursive
functions, precisely because they have different algebraic properties

Dual: apomorhisms…

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

58

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

The zoo-of-morphisms

So when this is going to end?????

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

59

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

The zoo-of-morphisms

A collection of recursion schemes is assembled from the literature by
Edward Kmett and implemented in Haskell.

Fold Schemes Description

Catamorphism Consume structure

level by level

Paramorphism Consume with primitive

recursion

Zygomorphism Consume with the aid of a

helper function

Histomorphism Consume, possibly multiple

levels at once

Prepromorphism Consume, by repeatedly

applying a natural

transformation

Unfold Schemes Description

Anamorphism Create structure level by level

Apomorphism Create structure, may stop and

return with a branch or level

Futumorphism Create structure, possibly

multiple levels at once

Postpro-

morphism

Create, by repeatedly applying

a natural transformation

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

60

http://comonad.com/reader/2009/recursion-schemes/

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

The zoo-of-morphisms

Okay, but why on Earth?

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

61

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

The zoo-of-morphisms

The reason is nothing complicated...

Precisely the same way we moved from
goto to for loops and then to algorithms...

We less likely to make a mistake, easier to read,
comprehend, manipulate, reason about.

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

62

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

The zoo-of-morphisms

C / C++ Functional

goto Y-combinator based recursion

for loops folds / unfolds

std::algorithms structured recursion schemes

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

63

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

64

Outlook

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

65

The correspondences does not and at Curry-Howard...

Logic Type Theory C++

Conjunction Product type ~ struct

Disjunction Sum type ~ union+enum

Implication Function type R f(A…)

Implication

introduction

Function definition R f(A a, A b){ return a*b; }

Implication

elimination

Function call f(a, b);

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

66

The correspondences does not and at Curry-Howard...

http://arxiv.org/abs/0903.0340

http://arxiv.org/abs/0903.0340

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

67

The correspondences does not and at Curry-Howard...

http://arxiv.org/abs/0903.0340

http://arxiv.org/abs/0903.0340

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

68

Introductory readings for the interested:

• Philip Wadler
• Propositions as Types, and other writings

• Benjamin C. Pierce – Types and Programming Languages

• Bob Coecke - Introducing categories to the practicing physicist

• Michael Barr, Charles Wells – Category Theory for Computing Science

• John C. Baez
• Physics, Topology, Logic and Computation: A Rosetta Stone

• A Prehistory of n-Categorical Physics

• Eric Meijer
Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/history.html#propositions-as-types
http://www.cis.upenn.edu/~bcpierce
http://arxiv.org/abs/0808.1032
http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0908.2469
https://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-2qDG-qnJAhVJBiwKHRAFBzEQFggfMAA&url=http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf&usg=AFQjCNFPFhD-q-LO6GEes1o0nZZluhZR2g&sig2=kR0ZYQqmBvK0sowN8k0LCw

GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Outlook

25 Nov 2015

F
u
n
c
tio

n
a
l P

ro
g
ra

m
m

in
g

69

Recommended reading to get used to functional languages:

Learn you a Haskell for great good!

Tim Williams: Recursion Schemes by Example Video

If you want to know how to base mathematics on homotopy type theory: link

If you want to know how to base physics along same lines: link video

http://learnyouahaskell.com/
https://github.com/willtim/recursion-schemes/raw/master/slides-final.pdf
https://www.youtube.com/watch?v=Zw9KeP3OzpU
http://homotopytypetheory.org/
http://arxiv.org/abs/1310.7930
https://www.youtube.com/watch?v=I6zNik0SggM

