
GPU Lab

D. Berényi – M. F. Nagy-Egri

λLectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Deep Magic

𝜆-calculus, Type Theory, Category Theory, Functional Programming



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

“The Jargon File makes a distinction between deep magic, 
which refers to code based on esoteric theoretical knowledge, 
and black magic, which refers to code based on techniques 
that appear to work but which lack a theoretical explanation.

It also defines heavy wizardry, which refers to code based on 
obscure or undocumented intricacies of particular hardware or 
software.”

Wikipedia
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https://en.wikipedia.org/wiki/Jargon_File
https://en.wikipedia.org/wiki/Magic_(programming)#Variants
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Formal systems

A formal system is somehow the “formalization” of 
mathematical abstract thinking, model construction and 
manipulation.

Its representation is a formal language, that consist of:

• A finite number of symbols

• A grammar which sequence of symbols is a well-formed formula,
which expression is meaningful in the system

• A finite set of axioms all of them are well-formed formulas

• A finite set of inference rules 
that transform well-formed formulas into well-formed formulas
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Propositional Logic

Propositional Logic consists of:

• Propositions: atomic formulas of logical statements. They truth value is 
either true or false.

• Composite expressions built by logical connectives:

• Negation (¬)

• And (∧)

• Or (∨)

• Implication (→)

• Equivalence (≡,↔)
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Propositional Logic

Propositional Logic is closed for the above operations:
composite expressions are also propositions

Argument: list of propositions, where the last one can be derived 
from the earlier ones.

Propositional Logic is a formal system:

• The symbols represent the atomic propositions

• Grammar is made from the logical connectives

• The axioms (if any) are considered true without premises

• The inference rules are truth preserving transformations,
and the new propositions derived this way are the theorems.
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Propositional Logic

The main application of Propositional Logic is to decide if two  
logical formulae have the same truth value by repeatedly 
applying the inference rules (proof)

There two things to be proven of such a logical forma system:

• Soundness - the rules does not contradict each other

• Completeness - all proofs can be carried out without the need 
for another inference rule.
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Propositional Logic

Extensions:

• First order logic:

logical functions: 𝑃(𝑥)

quantification over a group of objects that are subject of the 
propositions:
• Existential: ∃𝑥(𝑃(𝑥)): there exists an 𝑥, such that 𝑃(𝑥) is true
• Universal: ∀𝑥(𝑃(𝑥)): for all 𝑥 proposition 𝑃(𝑥) is always true

• Higher-order Logic:
Quantification can happen over functions or propositions, or 
sets of these...
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𝜆-calculus

𝜆-calculus is a formal system that is built to study function 
abstraction and application
by Alonso Church and his students:
Stephen Kleene and John Barkley Rosser

The elements of the grammar:

• Variable symbols: 𝑥, 𝑦

• Lambda abstraction: 𝜆𝑥. 𝑥2

• Lambda application: 𝜆𝑥. 𝑥2 4 → 16

Note: function application is 

just “whitespace”, otherwise 

the number of parentheses 

would be enormous...
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𝜆-calculus

Properties:

• 𝛼 − equivalence: the symbol of the parameter
(bound variable) does not matter: 𝜆𝑥. 𝑥2 ≡ 𝜆𝑧. 𝑧2

• 𝛽 − reduction: function application is just “find-and-replace” 

in the lambda abstraction: 𝜆𝑥.
𝑥2+𝑥

2𝑥−𝑥
4 ≡

42+4

24−4

assuming that the name of the variable being substituted does not clash with an 
existing name

• 𝜂 − equivalence : 𝜆𝑥. 𝑓𝑥 ≡ 𝑓
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𝜆-calculus

In a well-behaving formal system, there are normal forms, that 
cannot be simplified further by the transformation rules.

If a system is strongly normalizing, every expression can be 
simplified to such a normal form...

𝜆 −calculus is not such a system.
Consider this expression
and try to 𝛽 − reduce it:

𝜆𝑥. 𝑥 𝑥 𝜆𝑥. 𝑥 𝑥 → 𝜆𝑥. 𝑥 𝑥 (𝜆𝑥. 𝑥 𝑥)

Note:

function applications at every space!
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𝜆-calculus

Natural numbers can be encoded:

0 ≔ 𝜆𝑓. 𝜆𝑥 . 𝑥

1 ≔ 𝜆𝑓. 𝜆𝑥 . 𝑓 𝑥

2 ≔ 𝜆𝑓. 𝜆𝑥 . 𝑓 𝑓 𝑥

3 ≔ 𝜆𝑓. 𝜆𝑥 . 𝑓 𝑓 𝑓 𝑥

𝑛 ≔ 𝜆𝑓. 𝜆𝑥 . 𝑓𝑛 𝑥

These are higher order functions:
they apply a given 𝑓 function 𝑛 times on 𝑥: 3 𝑓 𝑥 = 𝑓 ( 𝑓 𝑓 𝑥 )
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𝜆-calculus

• Increment by one (succ):

𝜆𝑛. 𝜆𝑓. 𝜆𝑥. 𝑓 𝑛 𝑓 𝑥

• Addition: 𝑓𝑚+𝑛(𝑥) = 𝑓𝑚(𝑓𝑛(𝑥)):

𝜆𝑚. 𝜆𝑛. 𝜆𝑓. 𝜆𝑥.𝑚 𝑓 𝑛 𝑓 𝑥

• Multiplication: 𝑓𝑚∗𝑛 𝑥 = 𝑓𝑛 𝑚 𝑥

𝜆𝑚. 𝜆𝑛. 𝜆𝑓.𝑚 𝑛 𝑓

• Raise to power:
by definition: 𝑛 𝑓 𝑥 = 𝑓𝑛 𝑥, and now take 𝑓 → 𝑚, 𝑥 → 𝑓 to have:

𝜆𝑚. 𝜆𝑛. 𝑛 𝑚

• Decrement by one (pred):
𝜆𝑛. 𝜆𝑓. 𝜆𝑥. 𝑛 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑓 𝜆𝑢. 𝑥 (𝜆𝑢. 𝑢)

• Subtraction: 𝜆𝑚. 𝜆𝑛. 𝑛 𝑝𝑟𝑒𝑑 𝑚

Similarly Boolean logic and list 

operations can be represented...
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𝜆-calculus

The most interesting construction is the Y-combinator:
Y ≔ 𝜆𝑔. 𝜆𝑥. 𝑔 𝑥 𝑥 𝜆𝑥. 𝑔 𝑥 𝑥

• After two 𝛽 − reductions we have: 𝑌 𝑓 = 𝑓 𝑌 𝑓
Continuing: 𝑌 𝑓 = 𝑓 𝑌 𝑓 = 𝑓 ( 𝑓 𝑌 𝑓 )

• Such a function can be used to create a recursive function as 
follows:

Factorial_proto ≔ 𝜆𝑓. 𝜆𝑛. (𝑛 == 1 ? 1 ∶ 𝑛 × 𝑓 𝑓 𝑛 − 1 )

Factorial ≔ 𝑌 Factorial_proto

Pl.: Factorial 4 → 24

Note: The first argument will be its self!

25 Nov 2015

D
e
e
p
 M

a
g
ic

15



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

𝜆-calculus

Such recursions are infinite, they cannot be normalized.

This means, that 𝜆 −calculus cannot be interpreted as a 
consistent logical system...
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Brief history

Now we can speak a little bit about history...
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Brief history

At the beginning of the XX. Century Whitehead’s and Russel’s 
Principia Mathematica made it obvious, that most of then used 
mathematics is expressible with the tools of formal logic.

This lead David Hilbert to set the goal of constructing a 
complete and consistent formal system of mathematics, where 
given any statement it can be efficiently decided whether it is 

true or false. (Entscheidungsproblem)
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Brief history

Of course, the devil is in the details:

What is efficient? What is decidable?

Is it really true, that every statement is either true or false?

Also: in 2000 years it was not possible to define
“efficiently decidable”...

...and now out of nowhere appeared three definitions!
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Brief history

Church and his students constructed the 𝜆 −calculus. They said, 
that any statement, that is expressible and normalizable can be 
considered calculable (decidable)

Gödel didn’t like this, he devised the so called generalized 
recursive functions. Church’s team quickly showed the 
equivalence of this and their definition.

Alan Turing made the abstract model of the computer: the 
Turing machine. It turns out, that the Halting Problem is also 
equivalent with the above formulations…
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Brief history

These developments started to undermine Hilbert’s program, 
but it was completely proved impossible by Gödel:

• In any formal system, that is rich enough to encode the natural number 
arithmetic, there exists a statement that cannot be proven or disproven. 
These systems are not complete.

• Such a system cannot prove it’s own consistency
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Brief history

Something had to be done with such irreducible expressions and 
recursions... Especially in logic, where it lead to paradoxes.

Russels’s paradox:

• Let 𝐻 be a set, whose elements are those sets that do not contain 
themselves...

• Then 𝐻 is not a member of its self, so by definition it should contain its 
self, but this is a contradiction.
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Brief history

Some further related results were found:

• If a formal system is complex enough to encode arithmetic, then it 
cannot solve its own halting problem (such as expression normalizing).

• If we restrict the system, such as we take out recursion, then the halting 
problem will be trivial, but we cannot express certain calculations.
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Brief history

Paradoxes in logic were resolved in two ways:

• The restriction of set theory axioms and the related formal system:
Zermelo-Fraenkel set theory (together with the axiom of choice), this is 
the foundation of modern set theory.

• Introduction of types to annotate propositions by what kind of element 
collections can they operate on.
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Type theory

Type theory
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Type theory

Basic properties:

• We extend the formal system with types: any expression will have 
exactly one type

x ∶ T example: 2 ∶ integer

• Such a statement is a typing judgement. If the lhs is a composite 
expression, then it must be typed recursively by inspecting the 
subexpressions first.

• example: 2 + true cannot be typed.

25 Nov 2015

D
e
e
p
 M

a
g
ic

26



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Type theory

The formal system must be augmented by typing judgements, 
written as: : 

Type premises

Resulting type judgement

Example:

42 ∶ integer
read: the type of 42 is integer.  (no premises)

Functions are written by the → operator:

+ ∶ integer → integer → integer
(no premises)
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Type theory

Note: the → operator is understood to be in Curry-ed form:

Example:

+ ∶ integer → integer → integer

3+4 first step:

3 + ∶ integer → integer

second step:

3 + 4 ∶ integer

The → operator is right associative:

A → 𝐵 → 𝐶 = 𝐴 → (𝐵 → 𝐶)
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Type theory

The function calls are typed as:

𝑓 ∶ 𝐴 → 𝐵 𝑥 ∶ 𝐴

𝑓 𝑥 ∶ 𝐵
Again the example of 3+4 is typed as:

+ ∶ integer → integer → integer 3 ∶ integer
+ 3 ∶ integer → integer 4 ∶ integer

+ 3 4 ∶ integer
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Type theory

We need variables, but this means, we need to have a context: 
what is the type of a given symbol in the given context?

Γ = {x ∶ integer, f ∶ integer → integer }

All previous judgements should be augmented:

Γ ⊢ e ∶ T (type of 𝑒 is 𝑇 in Γ).
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Type theory

The typing judgement: 
Γ ⊢ x ∶ T

Earlier examples become like: 
Γ ⊢ 42 ∶ integer

Function abstraction: 
Γ,x ∶ T ⊢ e ∶ U

Γ ⊢ 𝜆x ∶ T . e ∶ T → U
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Type theory

Now:

• Unicity:
All expressions can have at most 1 type.
If an expression cannot be typed, it is an error.

• Soundness:
If an expression can be typed, then it can be safely evaluated!

• Completeness?
Can we type anything that is not erroneous at evaluation?

Related reading
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Type theory

Why we did this whole thing in the first place???

If we equip the 𝜆 −calculus with this type system we get a 
logically consistent formal system (the simply typed 𝜆 − calculus) 
that is strongly normalizing!!!

But, we cannot type the Y-combinator and similar recursive expressions...
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Type theory

Now some type combinators:

• Sum type: A + B (tagged union, variant, ...)
Contains either A or B (decided at runtime) constructed by either one.

• Product type: A × B (tuple, record, ...)
Contains A and B, constructed by both of them.

If the number of all possible values of type A is denoted by 𝐴 , 
then:

|𝐴 + 𝐵| = |𝐴| + |𝐵|
𝐴 × 𝐵 = 𝐴 ⋅ |𝐵|
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Type theory

The function type has: 𝐴 → 𝐵 = 𝐵𝐴 = B A

This gives the number of all possible functions taking A and returning B.

Types can be differentiated, 

see: link, link
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Type theory

In 1934 Haskell Brooks Curry observed that:

• The function signatures can be interpreted as implications.
So all function types are provable statements.

• Conversely: for all provable statements there exists a function type

• Same kind of relation hold between expressions and proofs.

In 1969 William Alvin Howard extended this:

• There exists a logical system called Natural Deduction (by Gerhard Gentzen) 

that corresponds to the simply typed 𝜆 −calculus

• Evaluation of expressions corresponds to the simplification of logical 
proofs.
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Type theory

Howard found that:

• 𝐴 ∨ 𝐵 corresponds to the sum type: 𝐴 + 𝐵

• 𝐴 ∧ 𝐵 corresponds to the product type: 𝐴 × 𝐵

• 𝐴 → 𝐵 corresponds to the function type: 𝐴 → 𝐵

• The fact, that sub-proofs can be composed by symbolic manipulations 
was known (Brouwer-Heyting-Kolmogorov), but its connection to programming 
was not.

This correspondence is known after Curry-Howard
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Type theory

Howard went further:

• Logical quantors then should have a counter part in type theory!

• These are the Existential and Universal Types,
today commonly known as Dependent Types.
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Type theory

The Curry-Howard correspondence inspired Jean-Yves Girard
and John Reynolds to construct System F (or polymorphic 𝜆 − calculus)

It was theoretically investigated further by Per Martin-Löf in the 
framework of Intuitionistic Type Theory to include dependent 
types.

Π − types correspond to universal quantification:
It is a dependent type, that maps a type to a type:
Example: an array that stores n elements of type T

ෑ

n:ℕ

Vector(T, n) ⟷ ∀𝑛 ∈ ℕ . 𝑇:𝒰 → Vector T, n ∶ 𝒰

Σ − types correspond to existential quantification:

෍

n:ℕ

List(T, n) ⟷ ∃𝑛 ∈ ℕ . List T, n ∶ 𝒰
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Type theory

The problem with System F is that while the rewrite rules are 
strongly normalizing, the type judgements are not decidable!

In general: dependently typed languages must balance between expressiveness 
and decidability!

This whole line lead to the investigation of different type systems and 
corresponding logical systems culminating in the development of proof assistants.

The system F and its extensions (Hindley-Milner) is the base of the modern 
functional languages like Haskell or the ML family, and many ideas started to 
propagate to Java and C#

The Martin-Löf theory is the base of the modern proof-assistants like Coq, Agda, 
Idris
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Yet another direction

Abstract algebra and category theory
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Abstract algebra

The beginning of the XX. century saw the axiomatization of 
algebraic structures also.

How do we define an algebraic structure?

• One (or more) underlying sets

• One (or more) operations on the elements of the underlying sets

• Some axioms on the operations
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Abstract algebra

Minimal example:

• Set 𝑆 without operations and axioms

Less minimal example:

• Magma
A set 𝑆 with one binary operation, that is closed:
applied to any two elements from 𝑆, the result is again in the set 𝑆.
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Abstract algebra

Physicists mainly familiar with groups:

Group:

An algebraic structure with one binary operation
(usually denoted by ⋅ )

Group axioms:

• Closure: ∀𝑎, 𝑏 ∈ 𝐺 . ∃𝑎 ⋅ 𝑏 ∈ 𝐺

• Associativity: 𝑎 ⋅ 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑏 ⋅ 𝑐

• Unity: ∃1 ∈ 𝐺 ∀𝑎 ∈ 𝐺 . 1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎

• Inverse: ∀𝑎 ∈ 𝐺 ∃𝑎−1 ∈ 𝐺 . 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 1
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Abstract algebra

But there are 
may other 
structures 
based on 
what axioms 
we impose:
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Abstract algebra

But there is more:
Ring-like structures:

There are two operations over 𝑆: + and ⋅ , where the axioms:

• S is an abelian-group with + (commutative, associative, unity, inverse)

• S is a monoid with ⋅ : (associative and has unity)

• + and ⋅ are distributive: 𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐

If division is possible also: division ring

If division is possible and the multiplication is commutative: field
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Abstract algebra

Structures continue with:

Vector space (𝑉) over field 𝐹 if

• 𝑉 is an abelian group with +,

• there is a ⋅ ∶ 𝑉 × 𝑉 → 𝐹 that has unity in 𝑉,

• compatible with the product in 𝐹: ∗: 𝑎 ⋅ 𝑏 ⋅ Ԧ𝑣 = 𝑎 ∗ 𝑏 ⋅ Ԧ𝑣
distributive over the addition in 𝐹: + and in 𝑉: +

𝑉 is a Module if 𝐹 is just a ring

Normed vector spaces

Topologic Vector spaces

Complete Topologic Spaces (Banach-, Hilbert-spaces)

If there is also a multiplication in the vector space: it is called an algebra.
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Abstract algebra

The problem with Abstract Algebra is that is deals with the 
structures as if they are isolated from the rest of the world.

Well... this is not exactly true...
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Abstract algebra

Group homomorphisms:

Transformations that map from one group to another,
while respecting the group structure:

Let 𝐺(𝑆, ⋅) and 𝐻(𝑃, ∗) be two groups, then

• 𝜙: 𝐺 → 𝐻 is a homomorphism, if:

𝜙 𝑔1 ⋅ 𝑔2 = 𝜙 𝑔1 ∗ 𝜙 𝑔2

• It follows that unity maps to unity and inverses map to inverses:
𝜙 𝑔−1 = 𝜙 𝑔 −1
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Abstract algebra

Group homomorphisms:

Transformations that map from one group to another,

while respecting the group structure:

Let 𝐺(𝑆, ⋅) and 𝐻(𝑃, ∗) be two groups, then

• 𝜙: 𝐺 → 𝐻 is a homomorphism, if:

𝜙 𝑔1 ⋅ 𝑔2 = 𝜙 𝑔1 ∗ 𝜙 𝑔2

• It follows that unity maps to unity and inverses map to inverses:
𝜙 𝑔−1 = 𝜙 𝑔 −1
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Abstract algebra

Group homomorphisms:

Transformations that map from one group to another,

while respecting the group structure:

Let 𝐺(𝑆, ⋅) and 𝐻(𝑃, ∗) be two groups, then

• 𝜙: 𝐺 → 𝐻 is a homomorphism, if:

𝜙 𝑔1 ⋅ 𝑔2 = 𝜙 𝑔1 ∗ 𝜙 𝑔2

• It follows that unity maps to unity and inverses map to inverses:
𝜙 𝑔−1 = 𝜙 𝑔 −1
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Category Theory

Category Theory

25 Nov 2015

D
e
e
p
 M

a
g
ic

52



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Category Theory

Abstract algebraic structures can be studied by 
investigating the structure preserving mappings 
between the structures

How to map from one structure from another, 
while preserving axioms?
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Category Theory

Minimal definition: 𝐶 is a category if:

• There exist an ob(C) class,
collection of “objects”

• There exist a hom(C) class
collection of morphisms
(directed connections between objects)

• There exist a binary operation on morphisms that is:
associative and has unity. This is called composition. 
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Category Theory

Some notations:

• Categories: 𝐶, 𝐷,…

• Objects: 𝑋, 𝑌, …

• Morphisms: 𝑓, 𝑔, …

• Identity morphisms on objects: 𝑖𝑑𝑋, 𝑖𝑑𝑌, …

• Morphism composition: ∘
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Category Theory

Morphisms can be:

• Isomorphism:
There exists an inverse, that composes to unity:

𝑓 ∘ 𝑓−1 = 𝑖𝑑𝑋
• Endomorphism:

The start and end object is the same

• Automorphism:
the two above at the same time

hom(𝑋, 𝑌) denotes the collection of all morphisms between 𝑋 and 𝑌
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Category Theory

Simple example:

Set:

• Objects are sets

• Morphisms are functions between sets

• Morphisms composition is the usual function composition
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Category Theory

Other categories:
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Category Theory

Product of objects:

• 𝑋 = 𝑋1 × 𝑋2 if the shown morphisms exist for any 𝑌, 𝑓1, 𝑓2-triple
and the diagram commutes.

• 𝑓 is then called the product of 𝑓1 𝑓2
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Category Theory

Most basic construct over categories: Functor
the generalization of homomorphisms to categories

𝐹 is a Functor between categories 𝐶 → 𝐷 if:

• 𝑋 ∈ 𝐶 ⇒ 𝐹 𝑋 ∈ 𝐷

• 𝑓: 𝑋 → 𝑌 ∈ 𝐶 ⇒ 𝐹 𝑓 : 𝐹 𝑋 → 𝐹(𝑌) ∈ 𝐷

such that:

• 𝐹 𝑖𝑑𝑋 ⇒ 𝑖𝑑𝐹(𝑋) ∀𝑋 ∈ 𝐶

• 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝑔 ∘ 𝐹(𝑓) ∀𝑓, 𝑔 ∈ 𝐶
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Category Theory

So a Functor maps the objects and morphisms of one category 

to another, such that:

• It maps unity to unity

• Preserves morphism composition
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Category Theory

Example from physics:

Let 𝐶 be a category, where:

• objects are abstract vector bases

• Morphisms are basis transformations

Then, 𝐹: 𝐶 → 𝐷 is a Functor if:

• it maps bases to coordinate vector sets,

• and transformations to basis transformation matrices

(composition: matrix product)

Let 𝐷 be a category, 

where these are 

represented by 

coordinates.
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Category Theory

If we fix a vector Ԧ𝑣 and the Functor 𝐹𝑣 maps:

• bases to the coordinates of vector Ԧ𝑣,

• basis transformations to the matrices acting on Ԧ𝑣

we find that the successive basis change of 𝐵1 and 𝐵2 should act 

on Ԧ𝑣 like 𝐵2
−1 ⋅ 𝐵1

−1

While repeating the same for linear functionals we find:

𝐵1 ⋅ 𝐵2
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Category Theory

It turns out, that Functors can be

• Covariant 𝐹: 𝐶 → 𝐷 if:

• 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐹 𝑓 : 𝐹 𝑿 → 𝐹 𝒀 ∈ 𝐷
• 𝐹 𝑔 ∘ 𝑓 = 𝐹 𝒈 ∘ 𝐹(𝒇) ∀𝑓, 𝑔 ∈ 𝐶

• Contravariant 𝐺: 𝐶 → 𝐷 if:

• 𝑓: 𝑋 → 𝑌 ∈ 𝐶 → 𝐺 𝑓 : 𝐺 𝒀 → 𝐺 𝑿 ∈ 𝐷
• 𝐺 𝑔 ∘ 𝑓 = 𝐺 𝒇 ∘ 𝐺(𝒈) ∀𝑓, 𝑔 ∈ 𝐶

So contravariant functors reverse morphisms and the order in 
composition.
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Category Theory

Opposite category:  𝐶𝑜𝑝

All morphisms are reversed.

It preserves functors:

𝐹: 𝐶 → 𝐷 𝑜𝑝 ≅ 𝐹: 𝐶𝑜𝑝 → 𝐷𝑜𝑝
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Category Theory

Exponentiation in a category:

• Let 𝐶 be a category where there is a product, and 𝑌, 𝑍 ∈ obj(𝐶)
objects

• Let (× 𝑌): 𝐶 → 𝐶 be a Functor, that
∀𝑋 ∈ 𝐶 → 𝑋 × 𝑌 and ∀𝑓 ∈ 𝐶 → 𝑓 × 𝑖𝑑𝑌

• Now:
𝑍𝑌 together with the morphism 𝑍𝑌 × 𝑌 → 𝑍 is the exponential of 𝑌
and 𝑍 if:

• ∀𝑋 ∈ 𝐶 there exists a morphism 𝑋 → 𝑍𝑌 unique to × 𝑌 𝑋 .

If this is valid for all 𝑍 ∈ 𝐶, then there is a bijection between

hom 𝑋 × 𝑌, 𝑍 and hom 𝑋, 𝑍𝑌
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Category Theory

What does this bijection mean?

It turns out, that:

• 𝑍𝑌 × 𝑌 → Z morphism represents the evaluation of the 
function 𝑍 → 𝑌 at argument 𝑌

• 𝑋 → 𝑍𝑌 represents the lambda abstraction:
𝜆𝑋 ≃ × 𝑌 𝑋 = 𝑋 → 𝑍𝑌

So the bijection between hom 𝑋 × 𝑌, 𝑍 and hom 𝑋, 𝑍𝑌 is 
actually the curried form of the two argument function
𝑓: 𝑋 × 𝑌 → 𝑍 that is: 𝜆𝑓: 𝑋 → 𝑍𝑌
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Category Theory

This means,
we just encoded the 𝜆 −calculus inside category theory!
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Category Theory

Bear with me, abstract nonsense finishes in a few minutes!

25 Nov 2015

D
e
e
p
 M

a
g
ic

69



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Category Theory

The Functor structure can be repeated again one level higher:

Cat: is the category of categories, where:

• The objects are categories

• The morphisms are Functors

Okay, then what are the Functors at this higher level that map 
Cat morphisms to each other?
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Category Theory

Natural Transformation (NT):

• If 𝐹 and 𝐺 are two Functors between categories 𝐶 and 𝐷, then

• 𝜂 is a NT, or a collection of morphisms, such that

• 𝑋 ∈ 𝐶 ⇒ 𝜂𝑋: 𝐹 𝑋 → 𝐺 𝑋 ∈ 𝐷

• Such that ∀𝑓: 𝑋 → 𝑌 ∈ 𝐶 it holds, that
𝜂𝑌 ∘ 𝐹 𝑓 = 𝐺 𝑓 ∘ 𝜂𝑋

• Or, to be more comprehensible,
this diagram commutes (start from 𝐹(𝑋))
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Category Theory

Natural Isomorphism (NI):

• If for all objects in 𝐶 the result of 𝜂 in 𝐷 is an isomorphism

25 Nov 2015

D
e
e
p
 M

a
g
ic

72



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Category Theory

Cartesian Closed Categories (CCC):

• Product and Exponential exists for all two objects, in the earlier sense

• There is a terminal object (there is a morphisms from all objects into the terminal)

Monoidal Categories: (generalize the monoid structure to categories)

• ⊗:C × C → C bifunctor (a functor mapping from two categories to one)

• 1 ∈ 𝐶 unit element

• Three natural isomorphisms, that state the monoidal axioms 
(associativity and unit element behaviour)
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Category Theory

Functorial Strength:

• If 𝑀 is a monoidal category, and 𝐹:𝑀 → 𝑀 is an endofunctor

• The strength of 𝐹 is the following natural transformation:

• 𝑣 ⊗ 𝐹 𝑤 → 𝐹(𝑣 ⊗𝑤)

• such that 𝑢 ⊗ 𝑣 ⊗ 𝐹 𝑤 = 𝐹 𝑢 ⊗ 𝑣 ⊗𝑤

• and 1⊗ 𝐹 𝑤 = 𝐹 𝑤

The monoidal product can be applied before the functor

Also multiple products 

and the unity

25 Nov 2015

D
e
e
p
 M

a
g
ic

74



GPU Lab

D. Berényi – M. F. Nagy-Egri

λ

Category Theory

If 𝐶 is a Cartesian Closed Category and it has Monoid 
structure too, then

• The statement that functor 𝐹 has a strength is equivalent with 
the existence of a Natural Transformation that maps 𝑓 ∈ 𝐶
morphisms to 𝐹 𝑓 morphisms.

• Put it otherwise: ∀𝑓: 𝑋 → 𝑌 ∈ 𝐶 ∃𝐹 𝑋 → 𝐹 𝑌 ∈ 𝐶
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Category Theory

This means that, taking the product of a morphism
𝑎 → 𝑏with 𝐹(𝑎):

hom 𝑎, 𝑏 ⊗ 𝐹 𝑎 ⇒𝐹(hom 𝑎, 𝑏 ⊗ 𝑎)

𝐹 hom 𝑎, 𝑏 ⊗ 𝑎 ⇒ 𝐹 𝑏

This means that: a function 𝑎 → 𝑏 can be raised to the functor structure 
and applied on the image of 𝑎 ( 𝐹(𝑎) ) resulting in an image of 𝑏 ( 𝐹(𝑏) )

Because of the Strength property

Because of the exponentiation of CCC
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Category Theory

Why is this generalized abstract 
nonsense is good for us really?
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Functional Programming

Programs can be seen as categories, where

• Objects are types

•Morphisms are functions between types
• Morphism composition is the function composition

like: f(g(x));

• Units are the identity functions:
like: int id(int x){ return x; }

And the Functors... ?
...Here begins the programming part!
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