(uisner

GPU Lab

Deep Magic
A-calculus, Type Theory, Category Theory, Functional Programming

Wigner RCP

Lectures on Modern Scientific Programming
23-25 November 2015

“The Jargon File makes a distinction between deep magic,
which refers to code based on esoteric theoretical knowledge,
and black magic, which refers to code based on techniques
that appear to work but which lack a theoretical explanation.

It also defines heavy wizardry, which refers to code based on
obscure or undocumented intricacies of particular hardware or

software.”

Wikipedia

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

SO

https://en.wikipedia.org/wiki/Jargon_File
https://en.wikipedia.org/wiki/Magic_(programming)#Variants

Formal systems Wisnar

J18ew daaq

Formal systems

SO

25 Nov 2015 3

Formal systems Wisnar

A formal system is somehow the “formalization” of
mathematical abstract thinking, model construction and
manipulation.

J18ew daaq

Its representation is a formal language, that consist of:
* A finite number of symbols

* A grammar which sequence of symbols is a well-formed formula,
which expression is meaningful in the system

e A finite set of axioms all of them are well-formed formulas

* A finite set of inference rules
that transform well-formed formulas into well-formed formulas

SO

25 Nov 2015 4

Propositional Logic e

Propositional Logic consists of:
* Propositions: atomic formulas of logical statements. They truth value is

O
either true or false. L
« Composite expressions built by logical connectives: §
* Negation (=) i
* And (A)
* Or (v)

 Implication (—)
» Equivalence (=, ©)

SO

25 Nov 2015 5

Propositional Logic

Propositional Logic is closed for the above operations:
composite expressions are also propositions

Argument: list of propositions, where the last one can be derived
from the earlier ones.

Propositional Logic is a formal system:

* The symbols represent the atomic propositions

« Grammar is made from the logical connectives

* The axioms (if any) are considered true without premises

* The inference rules are truth preserving transformations,
and the new propositions derived this way are the theorems.

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

SO

Propositional Logic

The main application of Propositional Logic is to decide if two
logical formulae have the same truth value by repeatedly
applying the inference rules (proof)

There two things to be proven of such a logical forma system:
» Soundness - the rules does not contradict each other

 Completeness - all proofs can be carried out without the need
for another inference rule.

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

SO

Propositional Logic e

Extensions:
* First order logic:

logical functions: P(x)

J18ew daaq

quantification over a group of objects that are subject of the
propositions:

 Existential: 3x(P(x)): there exists an x, such that P(x) is true

« Universal: Vx(P(x)): for all x proposition P(x) is always true

» Higher-order Logic:
Quantification can happen over functions or propositions, or
sets of these...

SO

25 Nov 2015 8

A-calculus Wimnar

J18ew daaq

A-calculus

SO

25 Nov 2015 9

A-calculus Wianar

GPU Lab

A-calculus is a formal system that is built to study function
abstraction and application

by Alonso Church and his students: =~
Stephen Kleene and John Barkley Rosser i
Note: function application is v;g
) just “whitespace”, otherwise
The elements of the grammar: the number of parentheses
e Variable symbols: X,y would be enormous...
« Lambda abstraction: Ax. x*
« Lambda application: (1x.x%) 4 — 16 }\

25 Nov 2015 10

A-calculus Wimnar

Properties:

* ¢ — equivalence: the symbol of the parameter
(bound variable) does not matter: Ax.x? = 1z. z*

* [/ — reduction: function application is just “find-and-replace”

2 2
in the lambda abstraction: (szxijﬁ) 4=

J18ew daaq

assuming that the name of the variable being substituted does not clash with an
existing name

* 1 —equivalence : Ax.fx = f }\

25 Nov 2015 11

A-calculus Wimnar

In a well-behaving formal system, there are normal forms, that
cannot be simplified further by the transformation rules.

O
If a system is strongly normalizing, every expression can be :
simplified to such a normal form... &
A —calculus is not such a system. Note: -

. . . function applications at every space!
Consider this expression
and try to f — reduce it:
(Ax.xx) (Ax.xx) » (Ax.x x) (Ax.x x) }\

25 Nov 2015 12

A-calculus Wimnar

Natural numbers can be encoded:
0:=Af.Ax.x
1=Af . Ax . f x
2:=Af Ax.f (f x)
3:=Af Ax.f (f (f)
n=Af.Ax.f"x

J18ew daaq

These are higher order functions:
they apply a given f function n timesonx: 3 fx=f(f(fx)) }\

25 Nov 2015 13

A-calculus Wimnar

 Increment by one (succ):
MAf Ax.f (nf x) operations can be represented...

Similarly Boolean logic and list

. Addition: F™ " (x) = F™(F™(x)):

Im.AnAf. Ax.m f (nf x) 3
* Multiplication: f™"*(x) = (f™)™ (x) z
Im.An.Af.m (nf) °
 Raise to power:
by definition: n f x = f™ x, and now take f - m,x — f to have:
Am.An.nm
* Decrement by one (pred):
. Af.Ax.n (Ag.Ah.h (g f)) (Au.x) (Au.u) }\
 Subtraction: Am.An.(npred) m

25 Nov 2015 14

https://en.wikipedia.org/wiki/Church_encoding

A-calculus Wimnar

The most interesting construction is the Y-combinator:
Y = Ag. (/lx.g (x x)) (Ax.g (x x))
» After two B — reductions we have: Y f = f (Y f)
Continuing: Y f=f (Y) =f(f (Y f))

* Such a function can be used to create a recursive function as

J18ew daaq

follows:

/ Note: The first argument will be its self!

Factorial_proto = Af. An.(n==1?1:nx(ff(n—1)))

Factorial := Y Factorial_proto
Pl.: Factorial 4 — 24 }\

25 Nov 2015 15

A-calculus Wimnar

Such recursions are infinite, they cannot be normalized.

J18ew daaq

This means, that A —calculus cannot be interpreted as a
consistent logical system...

25 Nov 2015 16

Brief history ner

J18ew daaq

Now we can speak a little bit about history...

25 Nov 2015 17

Brief history Wisnar

GPU Lab

At the beginning of the XX. Century Whitehead’s and Russel’s
Principia Mathematica made it obvious, that most of then used
mathematics is expressible with the tools of formal logic.

J18ew daaq

This lead David Hilbert to set the goal of constructing a
complete and consistent formal system of mathematics, where
given any statement it can be efficiently decided whether it is

true or false. (Entscheidungsproblem) }\

25 Nov 2015 18

Brief history ner

Of course, the devil is in the details:

What is efficient? What is decidable? §
Is it really true, that every statement is either true or false? "f—?
Also: in 2000 years it was not possible to define

“efficiently decidable”...

...and now out of nowhere appeared three definitions! }\

25 Nov 2015 19

Brief history

Church and his students constructed the A —calculus. They said,
that any statement, that is expressible and normalizable can be
considered calculable (decidable)

Godel didn’t like this, he devised the so called generalized
recursive functions. Church’s team quickly showed the
equivalence of this and their definition.

Alan Turing made the abstract model of the computer: the
Turing machine. It turns out, that the Halting Problem is also
equivalent with the above formulations...

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

20

Brief history ner

These developments started to undermine Hilbert’s program,
but it was completely proved impossible by Godel:

 In any formal system, that is rich enough to encode the natural humber
arithmetic, there exists a statement that cannot be proven or disproven.
These systems are not complete.

* Such a system cannot prove it’s own consistency

J18ew daaq

25 Nov 2015 21

Brief history Wisnar

GPU Lab

Something had to be done with such irreducible expressions and
recursions... Especially in logic, where it lead to paradoxes.

O
3
Russels’s paradox: z
* Let H be a set, whose elements are those sets that do not contain
themselves...
 Then H is not a member of its self, so by definition it should contain its
self, but this is a contradiction. }\

25 Nov 2015 22

Brief history ner

Some further related results were found:

* [f a formal system is complex enough to encode arithmetic, then it
cannot solve its own halting problem (such as expression normalizing).

J18ew daaq

* |f we restrict the system, such as we take out recursion, then the halting
problem will be trivial, but we cannot express certain calculations.

25 Nov 2015 23

Brief history ner

Paradoxes in logic were resolved in two ways:

* The restriction of set theory axioms and the related formal system:
Zermelo-Fraenkel set theory (together with the axiom of choice), this is
the foundation of modern set theory.

J18ew daaq

* Introduction of types to annotate propositions by what kind of element
collections can they operate on.

25 Nov 2015 24

Type theory Wianar

J18ew daaq

Type theory

25 Nov 2015 25

Type theory Wianar

Basic properties:
* We extend the formal system with types: any expression will have

exactly one type §
=
x: T example: 2 : integer &
* Such a statement is a typing judgement. If the lhs is a composite
expression, then it must be typed recursively by inspecting the
subexpressions first.
« example: 2 + true cannot be typed. }\

25 Nov 2015 26

Type theory Wimnar

GPU Lab

The formal system must be augmented by typing judgements,

. . Type premises
written as: : ZP= P
Resulting type judgement

O

D
<

Example: =
w
5

; read: the type of 42 is integer. (no premises)
42 :1nteger
Functions are written by the — operator:
: . : (no premises) }\
+ : integer — integer — integer

25 Nov 2015 27

Type theory Wianar

Note: the — operator is understood to be in Curry-ed form:

Example:
+ : Integer — Integer — integer

J18ew daaq

3+4 first step:

oo : The — operator is right associative:
(3 +) : integer — integer AsBoCoA = (B0

second step:

(3+)4 : integer }\

25 Nov 2015 28

Type theory Wianar

The function calls are typed as:
f+tA—->B x:A

&
fx:B S
Again the example of 3+4 is typed as: &
+ : integer — integer — integer 3 : integer
+ 3 :integer — integer 4 : integer

+ 3 4 : integer

25 Nov 2015 29

Type theory Wianar

We need variables, but this means, we need to have a context:
what is the type of a given symbol in the given context?

[' = {x : integer, f : integer — integer }
All previous judgements should be augmented:
Fe:T (type of eis T in IN).

J18ew daaq

25 Nov 2015 30

Type theory Wianar

The typing judgement: a——

Earlier examples become like:

J18ew daaq

['-42:integer

I'x:Tre:U
r'-(Ax:T.e): T->U

Function abstraction:

25 Nov 2015 31

Type theory Wianar

Now:

 Unicity:
All expressions can have at most 1 type.
If an expression cannot be typed, it is an error.

J18ew daaq

* Soundness:
If an expression can be typed, then it can be safely evaluated!

Related reading

« Completeness?
Can we type anything that is not erroneous at evaluation? }\

25 Nov 2015 32

http://stackoverflow.com/questions/21437015/soundness-and-completeness-of-systems

Type theory Wimnar

GPU Lab

Why we did this whole thing in the first place???

J18ew daaq

If we equip the A1 —calculus with this type system we get a
logically consistent formal system (the simply typed 1 — calculus)
that is strongly normalizing!!!

But, we cannot type the Y-combinator and similar recursive expressions...

25 Nov 2015 33

Type theory Wianar

Now some type combinators:

« Sum type: A+ B (tagged union, variant, ...)
Contains either A or B (decided at runtime) constructed by either one.

J18ew daaq

* Product type: A X B (tuple, record, ...)
Contains A and B, constructed by both of them.

If the number of all possible values of type A is denoted by |A],

then:
|A+ B| = |A| + |B|
|A X B| = |A| - |B|

25 Nov 2015 34

Type theory isnar

Types can be differentiated,
see: link, link

J18eyw daag

The function type has: |4 - B| = |B4| = |B|!A!
This gives the number of all possible functions taking A and returning B.

25 Nov 2015 35

http://strictlypositive.org/diff.pdf
http://stackoverflow.com/questions/9190352/abusing-the-algebra-of-algebraic-data-types-why-does-this-work

Type theory Wianar

In 1934 Haskell Brooks Curry observed that:

* The function signatures can be interpreted as implications.
So all function types are provable statements.

» Conversely: for all provable statements there exists a function type §
« Same kind of relation hold between expressions and proofs. §
In 1969 William Alvin Howard extended this:
* There exists a logical system called Natural Deduction (by Gerhard Gentzen)
that corresponds to the simply typed A —calculus
. EvalL;ation of expressions corresponds to the simplification of logical }\
proofs.

25 Nov 2015 36

Type theory Wianar

Howard found that:

« A V B corresponds to the sum type: A+ B

« A A B corresponds to the product type: A X B

« A — B corresponds to the function type: A - B

J18ew daaq

* The fact, that sub-proofs can be composed by symbolic manipulations
was known (Brouwer-Heyting-Kolmogorov), but its connection to programming

was not.

This correspondence is known after Curry-Howard N

25 Nov 2015 37

Type theory Wianar

Howard went further:
 Logical quantors then should have a counter part in type theory!

J18ew daaq

* These are the Existential and Universal Types,
today commonly known as Dependent Types.

25 Nov 2015 38

Type theory

The Curry-Howard correspondence inspired Jean-Yves Girard
and John Reynolds to construct System F (or polymorphic 21 — calculus)

It was theoretically investigated further by Per Martin-Lof in the
framework of Intuitionistic Type Theory to include dependent
types.

[1 — types correspond to universal quantification:
It is a dependent type, that maps a type to a type:
Example: an array that stores n elements of type T

HVector(T, n) < VvneN.T:U - Vector(T,n) : U
n:N
X — types correspond to existential quantification:

z List(T,n) <= 3In € N . List(T,n) : U
n:N

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

39

Type theory Wimnar

GPU Lab

The problem with System F is that while the rewrite rules are
strongly normalizing, the type judgements are not decidable!

In general: dependently typed languages must balance between expressiveness
an

decidability! &
=
This whole line lead to the investigation of different type systems and . v;g
corresponding logical systems culminating in the developmént of proof assistants.
The system F and its extensions (Hindley-Milnen{ is the base of the modern
functional languages like Haskell or the ML family, and many ideas started to
propagate to Java and C#
;I;ihe Martin-Lof theory is the base of the modern proof-assistants like Coq, Agda, A
ris

25 Nov 2015 40

Yet another direction @:’L‘i’

J18ew daaq

Abstract algebra and category theory

25 Nov 2015 41

Abstract algebra Qisner

GPU Lab

The beginning of the XX. century saw the axiomatization of
algebraic structures also.

J18ew daaq

How do we define an algebraic structure?

* One (or more) underlying sets
* One (or more) operations on the elements of the underlying sets
* Some axioms on the operations N

25 Nov 2015 42

Abstract algebra Qisner

GPU Lab

Minimal example:
 Set S without operations and axioms®©

J18ew daaq

Less minimal example:
* Magma

A set S with one binary operation, that is closed:
applied to any two elements from S, the result is again in the set S.

25 Nov 2015 43

Abstract algebra Qisner

GPU Lab

Physicists mainly familiar with groups:

Group:
An algebraic structure with one binary operation

(usually denoted by -) L
=
Group axioms: n
 Closure: Va,be G.3a-bEG
» Associativity: a-(b:-c)=(a-b)-c
* Unity: d1eG VaeG.1l-a=a-1=a

e Inverse: VaeGdaleG.a-al=al-a=1 }\

25 Nov 2015 44

Abstract algebra

But there are
may other
structures
based on
what axioms
we impose:

Semicategory
Category
Groupoid
Magma
Quasigroup
Loop
Semigroup
Monoid

Group

Totality® Associativity Identity

Unneeded
Unneeded
Unneeded
Required
Required
Required
Required
Required
Required

Abelian Group Required

*a Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently.

Required
Required
Required
Unneeded
Unneeded
Unneeded
Required
Required
Required
Required

Unneeded
Required
Required

Unneeded

Unneeded
Required

Unneeded
Required
Required
Required

Group-like structures

Unneeded
Unneeded
Required
Unneeded
Required
Required
Unneeded
Unneeded
Required
Required

Divisibility Commutativity

Unneeded
Unneeded
Unneeded
Unneeded
Unneeded
Unneeded
Unneeded
Unneeded
Unneeded

Required

25 Nov 2015

uisner
GPU Lab

J18ew daaq

45

https://en.wikipedia.org/wiki/Group_(mathematics)#Generalizations
https://en.wikipedia.org/wiki/Group_(mathematics)#Generalizations

Abstract algebra iener

But there is more:
Ring-like structures:

There are two operations over S: + and - , where the axioms: §
S is an abelian-group with + (commutative, associative, unity, inverse) E
* S is a monoid with - : (associative and has unity) i
 + and - are distributive: a- (b+c¢) =(a-b) + (a-c)

If division is possible also: division ring

If division is possible and the multiplication is commutative: field }\

25 Nov 2015 46

Abstract algebra iener

Structures continue with:
Vector space (V) over field F if
IV is an abelian group with +,

e thereisa::V xV — F that has unity in V,
« compatible with the productin F: «: a-(b-v) =(a*b)-v
distributive over the addition in F: + andin V: +

J18ew daaq

V is a Module if F is just a ring
Normed vector spaces

Topologic Vector spaces
Complete Topologic Spaces (Banach-, Hilbert-spaces) A
If there is also a multiplication in the vector space: it is called an algebra.

25 Nov 2015 47

Abstract algebra iener

The problem with Abstract Algebra is that is deals with the
structures as if they are isolated from the rest of the world.

J18ew daaq

Well... this is not exactly true...

25 Nov 2015 48

Abstract algebra iener

Group homomorphisms:

Transformations that map from one group to another,

while respecting the group structure: &
Let G(S, -) and H(P, *) be two groups, then a
* ¢:G — H is a homomorphism, if:
¢(g91 - 92) = ¢(g1) * $(g2)
* |t follows that unity maps to unity and inverses map to inverses: }\
p(g™) = ()7}

25 Nov 2015 49

Abstract algebra iener

Group homomorphisms:

Transformations that map from one group to another,

while respecting the group structure: 1
5
Let G(S, -) and H(P, *) be two groups, then o
* ¢: G - H is a homomorphism, if:
¢(g91 - 92) = ¢(g1) * $(g2)
* |t follows that unity maps to unity and inverses map to inverses: }\
p(g™) = ()7}

25 Nov 2015 50

Abstract algebra iener

respecting the group structure:

J18ew daaq

25 Nov 2015 51

Category Theory Wianar

J18ew daaq

Category Theory

25 Nov 2015 52

Category Theory Wimnar

GPU Lab

Abstract algebraic structures can be studied by

investigating the structure preserving mappings
between the structures

J18ew daaq

How to map from one structure from another,
while preserving axioms?

25 Nov 2015 53

Category Theory Wianar

Minimal definition: C is a category if:

* There exist an ob(C) class,
collection of “objects”

* There exist a hom(C) class
collection of morphisms
(directed connections between objects)

* There exist a binary operation on morphisms that is:
associative and has unity. This is called composition.

J18ew daaq

25 Nov 2015 54

Category Theory Wimrar

GPU Lab

Some notations:

« Categories: C, D, ...

* Objects: X,Y, ...

* Morphisms: f, g, ...

* |dentity morphisms on objects: idy,idy, ...
* Morphism composition: o

J18ew daaq

25 Nov 2015 55

Category Theory Wimnar

GPU Lab

Morphisms can be:
* [somorphism:

There exists an inverse, that composes to unity: =
_1 = 8
fof " =idy =
* Endomorphism: 5
The start and end object is the same
« Automorphism:
the two above at the same time
hom(X, Y) denotes the collection of all morphisms between X and Y }\

25 Nov 2015 56

(uisner

GPU Lab

Category Theory

Simple example:

J18ew daaq

Set:

* Objects are sets

* Morphisms are functions between sets
* Morphisms composition is the usual function composition

25 Nov 2015 57

Category Theory

Other categories:

Category
Mag
Man”
Met
R-Mod
Ring

Set

Grp

Top

Uni

Vectx

Objects
magmas
smooth manifolds
metfric spaces
R-modules, where R is a ring
rings
sets
groups
topological spaces
uniform spaces

vector spaces over the field K

Morphisms
magma homomorphisms
p-times continuously differentiable maps
short maps
R-module homomorphisms
ring homomorphisms
functions
group homomorphisms
continuous functions
uniformly continuous functions

K-linear maps

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

58

https://en.wikipedia.org/wiki/Category_(mathematics)#Examples
https://en.wikipedia.org/wiki/Category_(mathematics)#Examples

Category Theory Wianar

' |
Product of objects: / f\

Xl --:C—X]_ KXE—?-"‘XQ

« X = X; X X, if the shown morphisms exist for any Y, f;, f,-triple
and the diagram commutes.

J18ew daaq

* f is then called the product of f; f,

25 Nov 2015 59

Category Theory Wimrar

GPU Lab

Most basic construct over categories: Functor
the generalization of homomorphisms to categories

F is a Functor between categories C — D if:
e X EC>FX)€E D
e f:X->Y €eEC=>F(f):FX)-FX)e D

J18ew daaq

such that:
° F(ldX) — ldF(X) vX el
*F(go f)=F(g)oF(f)Vf,gEC

25 Nov 2015 60

Category Theory Wianar

So a Functor maps the objects and morphisms of one category
to another, such that:

J18ew daaq

* [t maps unity to unity

* Preserves morphism composition

25 Nov 2015 61

Category Theory

Example from physics:

Let C be a category, where:

(uisner

GPU Lab

Let D be a category,
where these are

* objects are abstract vector bases represented by 3

* Morphisms are basis transformations coordinates. %

Then, F:C — D is a Functor if:

* it maps bases to coordinate vector sets,

 and transformations to basis transformation matrices }\
(composition: matrix product)

25 Nov 2015 62

Category Theory Wianar

If we fix a vector v and the Functor F3; maps:
* bases to the coordinates of vector v,

* basis transformations to the matrices acting on v

J18ew daaq

we find that the successive basis change of B; and B, should act

on ¥ like By - B{'?

While repeating the same for linear functionals we find: }\

&

gl .

25 Nov 2015 63

Category Theory Wianar

It turns out, that Functors can be

* Covariant F: C — D if: o
c fX->Y EeEC>F(f):FX)-FX)e D i
*F(g o f)=F(@ e F(f)Vf,g€eC &
« Contravariant G: C - D if:
e f:X->Y €EC->G(f)GY)»GX)e D
*G(g e f)=G(f)oG(g) Vf,g€eC
So contravariant functors reverse morphisms and the order in }\

composition.

25 Nov 2015 64

Category Theory Wianar

Opposite category: C°P

All morphisms are reversed.

J18ew daaq

It preserves functors:

(F:C - D)°P = F:C% — Dop }\

25 Nov 2015 65

Category Theory

Exponentiation in a category:

 Let C be a category where there is a product, and Y, Z € obj(C)
objects

e Let (XY):C — C be a Functor, that
VXelC-XxYandVf el - f Xidy

* Now:
7Y together with the morphism Z¥ x Y — Z is the exponential of Y
and Z if:

* VX € C there exists a morphism X - Z¥ unique to (x Y)(X).

If this is valid for all Z € C, then there is a bijection between
hom(X x Y,Z) and hom(X, Z")

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

66

Category Theory Wimrar

GPU Lab

What does this bijection mean?

It turns out, that:

« Z¥ x Y - Z morphism represents the evaluation of the
function Z - Y at argument Y

« X > Z¥ represents the lambda abstraction:
X=(xVX)=X->2Z"

J18ew daaq

So the bijection between hom(X x Y,Z) and hom(X, Z¥) is
actually the curried form of the two argument function
f:X XY - Zthatis: Af: X - Z¥

25 Nov 2015 67

Category Theory Wianar

J18ew daaq

This means,
we just encoded the A —calculus inside category theory!

25 Nov 2015 68

Category Theory Wianar

J18ew daaq

Bear with me, abstract nonsense finishes in a few minutes!

25 Nov 2015 69

Category Theory Wimnar

GPU Lab

The Functor structure can be repeated again one level higher:

Cat: is the category of categories, where:
* The objects are categories
e The morphisms are Functors

J18ew daaq

Okay, then what are the Functors at this higher level that map
Cat morphisms to each other? }\

25 Nov 2015 70

Category Theory Wianar

Natural Transformation (NT):

 If F and G are two Functors between categories C and D, then 1
* n is a NT, or a collection of morphisms, such that %
c XeConuFX) > GX)ED Fx)— L peyy g
* Such that Vf: X - Y € C it holds, that
Ny e F(f) = G(f) o nx
X Ny
* Or, to be more comprehensible, v v
this diagram commutes (start from F(X)) G(X) ~ G(Y)
il |

25 Nov 2015 71

Category Theory Wianar

Natural Isomorphism (NI):

- If for all objects in C the result of n in D is an isomorphism H
=
F(X) F(f) -~ F(Y) 2

P ny

25 Nov 2015 72

Category Theory

Cartesian Closed Categories (CCC):
* Product and Exponential exists for all two objects, in the earlier sense
 There is a terminal object (there is a morphisms from all objects into the terminal)

Monoidal Categories: (generalize the monoid structure to categories)
* ®:C x C - C bifunctor (a functor mapping from two categories to one)
* 1 € C unit element

« Three natural isomorphisms, that state the monoidal axioms
(associativity and unit element behaviour)

25 Nov 2015

(uisner

GPU Lab

J18ew daaq

73

http://ncatlab.org/nlab/show/monoidal+category

Category Theory Wianar

Functorial Strength:
* If M is a monoidal category, and F: M — M is an endofunctor
* The strength of F is the following natural transformation:

J18ew daaq

c v Q@ F(w) » F(v Q w) The monoidal product can be applied before the functor

esuchthat uQ UV F(w)=F(u @ v w) Also multiple products
cand 1 ® F(w) = F(w) and the unity

25 Nov 2015 74

Category Theory Wianar

If C is a Cartesian Closed Category and it has Monoid
structure too, then

* The statement that functor F has a strength is equivalent with
the existence of a Natural Transformation that maps f € C
morphisms to F(f) morphisms.

J18ew daaq

 Put it otherwise: Vf: X - Y e (C 3F(X) - F(Y) eC }\

25 Nov 2015 75

Category Theory Wimnar

GPU Lab

This means that, taking the product of a morphism
a — b with F(a):

&
hom(a,b) @ F (a) = F(hom(a,b) @ a) Because of the Strength property s
F(hom(a,b) ® a) = F(b) Because of the exponentiation of CCC
This means that: a function a —» b can be raised to the functor structure
and applied on the image of a (F(a)) resulting in an image of b (F(b)) N

25 Nov 2015 76

Category Theory Wianar

I'M GETTING REAL
TIRED OEYOUR ...

J18ew daaq

Why is this generalized abstract
nonsense is good for us really?

Functional Programming wisnar

Programs can be seen as categories, where

* Objects are types

* Morphisms are functions between types
* Morphism composition is the function composition
ike: F(g(x));
 Units are the identity functions:
ike: int id(int x){ return x; }

J18ew daaq

And the Functors... ? }\
...Here begins the programming part!

25 Nov 2015 78

