(uisner

GPU Lab

The C++ language
and the standard library

By selected examples

Lectures on Modern Scientific Programming

Wigner RCP
23-25 November 2015 \ Ca

C++ language Wisnar

GPU Lab

Some design directives: (read more)
A useful language for real world applications

* Do not force people into a
specific programming style

 Direct mapping to hardware

 No implicit violations Bjarne Stroustrup
of the static type system Alink to his presentation at

cp ey . the Eotvos University in 2014
» Compatibility with C

« What you don’t use, you don’t pay for (zero-overhead rule) C

agensue] ++) 9y

24 Nov 2015 2

http://stroustrup.com/hopl-almost-final.pdf
http://ikportal.inf.elte.hu:8080/szoftvertechforum20140424/

C++ language

Evolution of standardization:

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)

L T

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

4 4
“ File System TS—AIA .-‘..°.

jibrary TR (akaTs) o hundamentaisTs

Parallelism TS Array TS
Concepts TS='|| ™= Networking TS

Performance TR

Tx Memory TS="*= Concurrency TS

24 Nov 2015

(uisner

GPU Lab

agensue] ++) 9y

C++ language Wimnar

GPU Lab

Features:
* Imperative programming
» Object-oriented programming (classes, inheritance)

* Functional programming (esp. since C++11: lambda functions)
» Generic programming (templates)

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

24 Nov 2015 4

C++ language Wisnar

GPU Lab

Available free compilers:
* Gnu Compiler Collection (GCC):

Mostly used on Linux/Mac systems,

Current version 5.2 C++14 feature complete. §

e Clang (LLVM): ¥
The most rapidly developing and most standard compliant compiler platform &
Easy to build tools to it ‘g
They are working on C++17 already. o
Drop-in compatible with GCC. Works on UNIX, Mac, almost fully working on windows

 Visual Studio (IDE) MSVC (Visual C++ compiler):
The slowest developing compiler, specific to Windows (many non standard behaviours)
(although a UNIX version is coming).

Proprietary C

++
 Intel C++ compiler: best performance especially on Intel processors. -

24 Nov 2015 5

https://gcc.gnu.org/
http://clang.llvm.org/
http://llvm.org/builds/
https://www.visualstudio.com/
https://software.intel.com/en-us/c-compilers

C++ language

(uisner

GPU Lab

Online compilers:
Useful for experimenting with language features and checking small programs

 gcc.godbolt gcc up to 5.2, clang up to 3.7, icc 13.0.1, and more,
cannot run program, but shows disassembly

 |deone gcc 5.1, can run the program

 Tutorialspoint gcc 4.9.2, can compile multiple sources together

» vc++ webcompiler latest nightly build of the msvc compiler

D. Berényi - M. F. Nagy-Egri 24 Nov 2015

agensue] ++) 9y

http://gcc.godbolt.org/
https://ideone.com/
http://www.tutorialspoint.com/compile_cpp11_online.php
http://webcompiler.cloudapp.net/

C++ language

(uisner

GPU Lab

Recommendations:

 Use clang!
Most standard compliant, best error messages

 Try your code with at least two compilers

why? compiler bugs, standard compliance
GCC + clang on linux, msvc + clang on windows

 Use an IDE!

Qt Creator on Linux, Visual Studio on Windows

24 Nov 2015

agensue] ++) 9y

C++ language Wisnar

GPU Lab

C++ is a very complex language... Hard to master it.

agensgue] ++) 9y

Here we do not go through all the language constructs in
details, rather give some examples and links to references

24 Nov 2015 8

Disclaimer

These examples are provided for demonstration purposes only.

They do not necessarily entirely correct for every imaginable

input, and not expected to work in all and any circumstances,
etc.

Even, if you play with them, you will run into more questions.
But really, this is what you should do!®©

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

C++ language Wisnar

GPU Lab

If you have a question:

» google for it
* Check for the problem on stackoverflow.com

» Read the relevant parts of cppreference.com
* Ask us©

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

24 Nov 2015 10

http://www.google.com/
stackoverflow
http://en.cppreference.com/

C++ language by examples Wisnar

GPU Lab

All example codes are available on the webpage!

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

(TODO: insert link here!)

24 Nov 2015 11

C++ language by examples wianar

GPU Lab

Simple hello world: =
2
+
&
#include <iostream> @
2
int main() ®
{
std::cout << "Hello World" << std::endl;
return 0;
}

24 Nov 2015 12

C++ language by examples Wiener

GPU Lab

Simple hello world: =
(@)
This is a function called ,,main” that H
returns an integer. This is the entry &
/ point to the program. c
(()e]
int main() g
{
All statements must end with “;”
return 0;
}

The value that the function will return to the caller

The body of the function must be (i this case it will be passed to the OS) C ++‘
enclosed by { }

PROGRAMMING LANGUAGE

24 Nov 2015 13

C++ language by examples

This is the way to use code from other source files,
this time the Input/Output library from the file ,,iostream”

Simple hello world:

std is a namespace, all names inside it can be
accessed by std: :nameofsomething

#include <iostream> std: :cout is the object representing the standard output
int main()

Character string to displa

std::cout << "Hello World" << std::endl;

return 0;
}

The platform specific line end string and flush

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

Cov

PROGRAMMING LANGUAGE

14

C++ language by examples Wisnar

GPU Lab

A simple function:

double addSqg(double x, double vy)
{

return x*x + y*y;
}

24 Nov 2015 15

C++ language by examples Wisnar

GPU Lab

A simple function:

This is the name of the function

This is the type of the value

, : Between the ()s is the argument list of the function
that the function will return

/(type and name pairs, separated by commas)

agensgue] ++) 9y

double addSqg(double x, double vy)
{

}

return x*x + y*y;

Body of the function

Cov

PROGRAMMING LANGUAGE

24 Nov 2015 16

C++ language by examples @Eﬁi‘f{

A simple function: Why?
/ Details later in the template
C++11 introduced the trailing return type, metaprogramming session.

in this case auto must stand here

«/”///////’

auto addSqg(double x, double y)->double
{

}

agensgue] ++) 9y

return x*x + y*y;

24 Nov 2015 17

en.cppreference.com/w/cpp/language/function

C++ language by examples @Eﬁi‘;’

A simple function:

C++14 makes it possible to infer the return type of a function from the return statements!

in this case auto must stand here \

auto addSq(double x, double y) | Nothingishere |
{

}

agensgue] ++) 9y

return x*x + y*y;

24 Nov 2015 18

C++ language by examples Wisnar

GPU Lab

Some simple array manipulation, traditional C:

_l

=

D

int values[3]; A
for(int i=0; i<3; i=i+1) ;
{ @
values[i] = i+1; 5

})

int sum = 0;
for(int i=0; i<3; i=i+1)
{

sum = sum + values[i] * values[i];
} THE
(4

24 Nov 2015 19

C++ language by examples

Some simple array manipulation, traditional C:

__ An array that stores 3 integers

int values[3]; <« __ Aloop statement, that declares a loop variable (i),
for(int 1=0; i<3; i=i+1" initializes it to 0 and repeats the statements inside { }
{ with 1 being increased by one each time until i<3
values[i] = i+l; < holds. .

} Equivalent to:

__ Vvalues[0] =1,
int sum = 0O; values[1] = 2;
for(int i=0; i<3; i=i+1) values[2] = 3;
{

sum = sum + values[i] * values[i];

} \
This loop calculates the sum of squares of the array into the variable sum

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

Cov

PROGRAMMING LANGUAGE

20

C++ language by examples Wisnar

GPU Lab

While loops are flexible and powerful,
they are prone to indexing (and scoping) errors.

agensgue] ++) 9y

Try to avoid explicit loops and use algorithms instead!

24 Nov 2015 21

C++ language by examples Wisnar

GPU Lab

#include <array> //for std::array
#include <numeric> //for std::iota, std::accumulate
#include <iostream> //for std::cout

° ° _I
int main() D
{ ¢
std::array<int, 5> values; *
Q
- |
std::iota(values.begin(), values.end(), 1); %
(o]
auto sum = std::accumulate(values.begin(), ?
values.end(),
0,
[](int a, int b){ return a+b*b; });
std::cout << "Sum is: " << sum << std::endl; ‘
return 0; R -
} C+_I?'P'

PROGRAMMING LANGUAGE

24 Nov 2015 22

C++ language by examples Wisnar

GPU Lab

#include <array> //for std::array
#include <numeric> //for std::iota, std::accumulate
#include <iostream> //for std::cout

o L4 L] ﬂ
int main() __ An array that stores 5 integers =
{ 4 ° A
std::array<int, 5> values%Start and end of the std: :array E

Q

- |

std::iota(values.begin(), values.end(), 1); E

- v

== std::iota is a function that fills an array
starting from the value of the last
argument (now: 1), and increasing it at
each step.

} re

PROGRAMMING LANGUAGE

24 Nov 2015 23

C++ language by examples wianar

GPU Lab

#include <array> //for std::array
#include <numeric> //for std::iota, std::accumulate

#include <iostream> //for std::cout) tomatically inferred type (C++11)

int main() (will be int because 0 here is int) ?
{ (@)
+
&
@
c
¢o
auto sum = std::accumulate(values.begin(), ?
N values.end(), std::accumulate 1is
0, < a function that
) calculates a
reduction of a
sequence of
} elements C+7+

PROGRAMMING LANGUAGE

24 Nov 2015 24

http://en.cppreference.com/w/cpp/language/auto

C++ language by examples Wisnar

GPU Lab

_|
>
C++11 introduced the lambda functions (anonymous functions). ?
These are expressions(!), that are in-place declared name-less functions: %
Q
Argument list Return type (can be omitted) Function body ®
[](int a, int b)->int{ return a+b*b; }
Lambda introducer syntax
(capture clause) C++‘

PROGRAMMING LANGUAGE

24 Nov 2015 25

http://en.cppreference.com/w/cpp/language/lambda

C++ language by examples Wisnar

GPU Lab

#include <array> //for std::array
#include <numeric> //for std::iota, std::accumulate ,
#include <iostream> //for std::cout std::accumulate use this
, , lambda function to =
?nt main() reduce the elements of >
the array, by repeatedly H
applying it: &
va
al |bjbjb 8
auto sum = std::accumulate(values.begi \f/ ?
values. (), 3
0,
[](int a, int b){ return a+b*b; }); \\f
a

f
| e

PROGRAMMING LANGUAGE

24 Nov 2015 26

C++ language by examples Wisnar

GPU Lab

#include <array> //for std::array

#include <numeric> //for std::iota, std::accumulate
#include <iostream> //for std::cout

int main()

{

Write out the string "Sum is: "

followed immediately by the value of
the variable sum and a line break.

agensue] ++) 9y

std::cout << "Sum is: " << sum << std::endl;

PROGRAMMING LANGUAGE

24 Nov 2015 27

C++ language by examples Wisnar

GPU Lab

#include <array> //for std::array
#include <numeric> //for std::iota, std::accumulate
#include <iostream> //for std::cout

° ° _I
int main() D
{ ¢
std::array<int, 5> values; *
Q
- |
std::iota(values.begin(), values.end(), 1); %
(o]
auto sum = std::accumulate(values.begin(), ?
values.end(),
0,
[](int a, int b){ return a+b*b; });
std::cout << "Sum is: " << sum << std::endl; ‘
return 0; R -
} C+_I?'P'

PROGRAMMING LANGUAGE

24 Nov 2015 28

C++ language by examples @Eﬁi‘f{

When using the simplest argument passing, a local copy of the value is created for the

function:
These are local variables, containing a
-— / copy of the values from the call site!
auto addSqg(double x, double vy)

agensgue] ++) 9y

Co

PROGRAMMING LANGUAGE

24 Nov 2015 29

C++ language by examples Wisnar

If we have a large object, we may want to avoid the copy.

There are multiple choices: g
(@)
H
auto f(BigObject* x) Passing by naked pointer Not recommended!!! 5
va
c
£(std: : shared { 20 Passing by a smart pointer (C++11) &
auto f(std::shared ptr<BigObject> x) Involves some overhead
auto f(BigObject& x) Passing by reference recommended
A reference is physically a pointer, |
but its semantics are much more restricted (cannot be null, no arithmetic on it, etc.) C ++1

PROGRAMMING LANGUAGE

24 Nov 2015 30

http://en.cppreference.com/w/cpp/language/reference

C++ language by examples Wisnar

GPU Lab

Value categories: (since C++11)

» L-value: any value that is bound to a name already
Can be assigned to (can stand on the left of the operator=), it has address in memory

_|
e Pure r-value: temporary, not bound to a name! i
Examples: a literal, or a value resulting from a function call H
No address in memory, can only stand on the right side of operator= &
va
« X-value: eXpiring object, not bound to a name! c%
No address in memory, can only stand on the right side of operator= g
Examples: function returning an r-value reference, static cast to an r-value
reference, member of an x-value object
« Gl-value: L-value + X-value -> they bind to const&
* R-value: X-value + Pure R-value -> they prefer & over const& C++

PROGRAMMING LANGUAGE

24 Nov 2015 31

http://en.cppreference.com/w/cpp/language/value_category
http://en.cppreference.com/w/cpp/language/static_cast

C++ language by examples

C++11 introduced a new kind of reference, that is called the r-value reference.
auto f(BigObject* x)

auto f(std::shared ptr<BigObject> x)
auto f(BigObject& x)

<

auto f(BigObject&&.x)

This expresses, that the function will take
ownership of the object being passed to it

Call site: (it may only involve a shallow copy)

BigObject bo = ...;
The same transfer may happen if the object
auto result = f(std::move(bo))/ is being passed as a return value from

auto result = f(makeBigObject(...));another function

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

Cov

PROGRAMMING LANGUAGE

32

C++ language by examples Wisnar

GPU Lab

Rule of thumb, what to use and when:

When the object is small (say <=128 bit),

auto f(Object x) and/or copy is needed §
(@)

auto f(Object* x) Never, unless you know exactly what and why you are doing :_,
=2
vo

. . c
auto f(std::shared ptr<Object> x) When you really need to share the object with %
other parts of the program, and x may be null

auto f(BigObject& x) When you really need to modify the outer object

auto f(BigObject const& x) When you don’t need to modify the object

auto f(BigObject&& x) When you’d like to take ownership of the object C++

PROGRAMMING LANGUAGE

24 Nov 2015 33

C++ language by examples

One more thing about references

The perfect forwarding problem:

Many times, you’d need to duplicate code, just because it should
work both with const&s and &&s!

This is taken care by the language if the type is a template:

template<typename T> bar will receive the value as it was passed to foo:
if it was a const&, it’ll bind to bar(const&),
auto foo(T&& T) if it was a &&, it’ll bind to bar(T&&)

{
return bar(std::forward<T>(t));

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

http://en.cppreference.com/w/cpp/language/reference
http://en.cppreference.com/w/cpp/utility/forward

C++ language by examples Wisnar

GPU Lab

Structs may be familiar to C programmers:

* Structs are collections of variables and functions that manipulate
them

agensgue] ++) 9y

* They are the building blocks of object-oriented programming

24 Nov 2015 35

C++ language by examples

Classes extend the functionality of structs

 Classes may enforce access-control on members
(both data and functions)

« Astruct is a class with all it’s members being public

In C++, both Classes and Structs may
* Inherit from one another (is-a, has-a relationship)
« Have virtual functions (will not treat it here)

24 Nov 2015

(uisner

GPU Lab

agensgue] ++) 9y

http://en.cppreference.com/w/cpp/language/access

C++ language by examples wianar

GPU Lab

Objects:
introduce a new type, that encapsulates data and functions

struct Circle

{

agensgue] ++) 9y

double r;

double area(){ return r*r*3.1415; }

} fe

24 Nov 2015 37

C++ language by examples Wisnar

GPU Lab

Objects:
introduce a new type, that encapsulates data and functions =
D
/ keyword: struct O_:class/ Name of the new type ?
struct Circle E
Data members: 5
{ / type and name pairs, separated by “;” ©
double r;
double area(){ return r*r*3.1415; }
G
}J — Member functions C++‘

24 Nov 2015 38

http://en.cppreference.com/w/cpp/language/class

C++ language by examples Wisnar

GPU Lab

Such an object can be instantiated on the stack and its
members can be accessed by “.”:

agensgue] ++) 9y

Circle c{2.};
auto R = c.r;
auto A = c.area();

24 Nov 2015 39

C++ language by examples Wisnar

GPU Lab

Such an object can be instantiated on the heap and its
members can be accessed by “->":

_|
=
Here, we use the smart pointer o
std::shared_ptr that manages deallocation. H
&
=2
. . PR . va
#include <memory> Avoid using naked new, it is muc.h ea51eroto | é
make a memory management mistake with it. ®
std: :shared ptr<Circle> c =
std: :make shared<Circle>(Circle{2.});
auto R = c->r;
auto A = c->area(); CH‘

24 Nov 2015 40

http://en.cppreference.com/w/cpp/memory/shared_ptr

C++ language by examples Wisnar

GPU Lab

Constructors and destructors:

Objects have special functions that manage their creation and
disposal.

agensgue] ++) 9y

Constructors create a new instance of the object,
Default cons. (takes no argument), Copy cons., Move cons.

The destructor finalizes the state of the object for removal
from memory.

24 Nov 2015 41

C++ language by examples

Constructors and destructors are the quintessence of C++

The language makes very strong guarantees on running
constructors and destructors and their ordering

These guarantees drive the RAIl idiom in C++
* This is the feature used by smart pointers and mutex locks (see later)

This is why C++ does not need garbage collection and why it’s
fast

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

http://en.cppreference.com/w/cpp/language/raii

C++ language by examples Wisnar

GPU Lab

Constructors and destructors:

Until you only use built in types and library objects, you don’t need to
worry about construction and destruction and assignment, the compiler

_|

will generate the necessary functions automatically: 2
struct Circle <
{ c“%

std: :array<double, 2> position;

double r;
}s
Circle c{ {{2., 5.}}, 2.5 }; Here we use C++11 list initialization C++‘

Circle c2; c2 = c;

24 Nov 2015 43

http://en.cppreference.com/w/cpp/language/list_initialization

C++ language by examples wianar

GPU Lab

Constructors and destructors:

If you need to do something more involved (e.g. has ownership)
read the rule of three/five/zero:

struct Vector

i

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

size t n;
std::unique ptr<T[]> data;

24 Nov 2015 44

http://en.cppreference.com/w/cpp/language/rule_of_three

C++ language by examples Wisnar

GPU Lab

Constructors and destructors:

In the most generic case, you need to provide the following:
struct Vector

=

{ Default constructor %
Vector() il
Vector(Vector const& cpy); Copy constructor %
Vector(Vector && mv); Move constructor 3
Vector& operator=(Vector const& cpy); Copy assignment
Vector& operator=(Vector && mv); Move assignment
~Vector();

} (); Destructor C ++‘

24 Nov 2015 45

C++ language by examples Wisnar

GPU Lab

About doing mathematics in C++:

C++ has:

 Built in numeric types (int, float, double)
with arithmetic operations

« Has common and special functions
(see the complete list here, it got extended in C++11)

» Has complex data type, with arithmetic and trigonometric
support (augmented in C++11)

« Compile time rational arithmetic (since C++11)

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

24 Nov 2015 46

http://en.cppreference.com/w/cpp/numeric/math
http://en.cppreference.com/w/cpp/numeric/complex
http://en.cppreference.com/w/cpp/numeric/ratio

C++ language by examples Wisnar

GPU Lab

About doing mathematics in C++:

C++ has:

* A type named valarray for array-wise operations (C++11)
(although the design is flawed a bit, it is not very recommended)

* A pseudo-random number library (C++11)

Designed by a physicist©: several good generators and
several widely used distributions

* Few widely used algorithms:

std::iota, std::accumulate, std::inner_product,
std::adjacent_difference, std::partial_sum

agensue] ++) 9y

24 Nov 2015

S
~N

http://en.cppreference.com/w/cpp/numeric/valarray
http://en.cppreference.com/w/cpp/numeric/random

C++ language by examples Wisnar

GPU Lab

About doing mathematics in C++:

What C++ is badly missing:

* A standard n-dimensional Vector, Matrix class
and linear algebra on it

It is just plain too hard for the committee
to agree on the design of such a big beast...

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

24 Nov 2015 48

C++ language by examples wianar

GPU Lab

Some other examples...

agensgue] ++) 9y

24 Nov 2015 49

C++ language by examples Wisnar

GPU Lab

Functions can return only one object.

_|
But that can be composite: use std::tuple o
std::tuple<int, int, double> f(int a, int b) %
t %

return std::make tuple(a, b, (double)a/(double)b);

}
std::tie can be used to expand the contents of the tuple into l-value
references! e

24 Nov 2015 50

http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple/tie

C++ language by examples Wisnar

GPU Lab

Do not write algorithms always by hand, always check if it is
available in the standard library:

« Non-modifying sequence operations
* Modifying sequence operations

* Partitioning

e Sorting

 Binary search

* And more...

agensgue] ++) 9y

Many of these got extended in C++11/14! “"C++

24 Nov 2015 51

http://en.cppreference.com/w/cpp/algorithm

C++ language by examples wianar

GPU Lab

Using them is simple:

agensgue] ++) 9y

std::array<int, 7> values{1l, 42, 2, 56, 7, -1, 6};
std: :sort(values.begin(), values.end());

24 Nov 2015 52

C++ language by examples Wisnar

GPU Lab

Also check out the containers library:

* Sequence containers
(0(1) and O(N))

* Associative containers
(key based O(log N) access)

» Unordered associative containers (C++11)
(key based, hashed with O(1) amortized access)

« Adaptors

agensue] ++) 9y

Many of these got revised / extended in C++11/14!

®)
=3

24 Nov 2015

Ul
w

http://en.cppreference.com/w/cpp/container

C++ language by examples Wisnar

GPU Lab

|/0 and strings: use iterators and streams!

We give examples to read manipulate and write data

Stream:

An object, that represents sequence of characters or binary
data (most prominently: files and console)

agensgue] ++) 9y

Ilterator:

An object, that represents position in a container or stream
(generalization of a pointer or index) C+§

PROGRAMMING LANGUAGE

24 Nov 2015 54

C++ language by examples Wisnar

GPU Lab

Opening a file and reading ints from it:

std::vector<int> data;

_|
>
(@]
std::ifstream input("data.txt", std::ios::in); H
if(!input.is_open()) 2
S
{ 3
std::cout << "Could not open input file " << std::endl;
}
std::copy(std::istream iterator<int>(input),
std::istream iterator<int>(), L
std: :back _inserter(data)); (::#!5

PROGRAMMING LANGUAGE

24 Nov 2015 55

C++ language by examples

Opening a file and reading ints from it (separated by whitespace):

Input file stream object
std::vector<int> data;

std::ifstream input("data.txt", std::ios::in);
if(!input.is_open()¢)

Check if file could be located and opened

{
std::cout << "Could not open input file " << std::endl;
}
std::copy(std::istream iterator<int>(input),*—Begin of file iterator
std::istream iterator<int>(), <— End of file iterator
std: :back_inserter(data)); <— |terator to insert into data
24 Nov 2015

(uisner

GPU Lab

agensgue] ++) 9y

Cov

PROGRAMMING LANGUAGE

56

C++ language by examples wianar

GPU Lab

Opening a file and writing ints to it (separated by whitespace):

_l
>
o
std: :vector<int> data; é
/ Output file object E
[0}
std::ofstream output(“"data2.txt", std::ios::out);
— Begin of container .
std: :copy(data.begin(), End of container Iterator to output file,
data.end(), — Separator is space -
std::ostream iterator<int>(output, " ")); C++

24 Nov 2015 57

C++ language by examples Wisnar

GPU Lab

Streams provide a formatted output operator:

std::ifstream file("data.txt", std::ios::out);

agensgue] ++) 9y

int 1 = 0;/Converts characters into an integer automatically if possible.
file >> 1i; o _ o
If it fails, i is unmodified!

24 Nov 2015 58

C++ language by examples Wisnar

GPU Lab

You can create a stream of characters and use it as an universal converter
from/to strings:

std::stringstream ss;
double x = sqrt(2.0);
SS << X; = Converts the floating point value to string in ss

std::string s = ss.str();

agensgue] ++) 9y

float y = 0.0f;

ss >> y; Converts the string back to a floating point value
if(ss){ std::cout << "Conversion to float succeeded." << std::endl; }
else { std::cout << "Conversion to float failed." << std::endl; }

Cov

PROGRAMMING LANGUAGE

24 Nov 2015 59

C++ language by examples Wisnar

GPU Lab

What are these “>>” and “<<“ really?

agensgue] ++) 9y

Will they work for user defined types?

24 Nov 2015 60

C++ language by examples wianar

GPU Lab

A user defined data type:

_|
-
struct Data o
{ 5
. . <
int 1; &
double X5 / C++ object for representing ASCI| strings with
. some useful methods
std::string s;
¥

24 Nov 2015 61

http://en.cppreference.com/w/cpp/string/basic_string

C++ language by examples Wisnar

GPU Lab

A user defined data type and the stream out operator
implementation for it:

struct Data{ int i; double x; std::string s; };

C++ operators are just functions. where name the is operator keyword + symbol

std::ostream& operator<<(std::ostream& s,
Data const & d)
{

s<<"{“ << d.i <<", "<< d.x <<", "<< d.s.c_str() << "}";
return s;

\ fo..

24 Nov 2015 62

agensgue] ++) 9y

C++ language by examples Wisnar

GPU Lab

C++ object for representing a generic output stream.
It has to be passed back as the return value

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

std: :ostrea operator<<(std::ostream& s,
Data const & d)
{

s<<"{“ <¢ d.i <<", "<< d.x <<", "<< d.s.c_str() << "}";
return s;

¥

24 Nov 2015 63

C++ language by examples Wisnar

GPU Lab

Input:

std::istream&.operator>>(std::istream& s, Data& d)
{ /
std::string tmp;

-
std::getline(s, tmp); C++ object for representing a generic input stream. i
if(tmp.size() > 0) It has to be passed back as the return value_ E
{

std::stringstream ss(tmp); &
std::getline(ss, tmp, ','); d.i = std::stoi(tmp);
std::getline(ss, tmp, ','); d.x = std::stod(tmp);
std::getline(ss, d.s);
}
return s; -
}) (::;!!

24 Nov 2015 64

C++ language by examples Wisnar

GPU Lab

* Time measurement was standardized in C++11:

auto tl = std::chrono::high resolution clock::now();

//some lengthy operation...

agensgue] ++) 9y

auto t2 = std::chrono::high resolution clock::now();

long long duration = < 64 bit signed integer type (C++11)

std: :chrono: :duration_cast<std: :chrono::microseconds>(t2-tl1).count();

24 Nov 2015 65

C++ language by examples fﬁﬁi‘f{

Very basic Vector type:
struct Vector2i{ int x, y; };

Vector2i operator+(Vector2i const& u, Vector2i const& v)

{
¥

return Vector2i{ u.x+v.Xx, U.y+V.y };

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

Vector2i operator-(Vector2i const& u, Vector2i const& v)

{
}

return Vector2i{ u.x-v.x, u.y-v.y };

24 Nov 2015 66

C++ language by examples Wisnar

GPU Lab

Very basic Vector type:
struct Vector2i{ int x, y; };

Operators are non-
commutative!

_|
We have to define >
Vector2i operator*(int c, Vector2i const& v) both ¥
{ « left and right scalar 5
=2
return Vector2i{ c * v.x, ¢ * v.y }; product: @
} %
Vector2i operator*(Vector2i const& v, int c)
{
return Vector2i{ c * v.x, ¢ * v.y };
}

24 Nov 2015 67

C++ language by examples Wimnar

GPU Lab

Very basic Vector type: We recommend to have the scalar product
struct Vectopzi{ int X, Y; }; as a function instead of an operator.

— May lead to surprises otherwise. _,

=5

— o

int dot(Vector2i const& u, Vector2i const& v) H
{]
return u.x * v.x + u.y * v.y; <

) 3

std::ostream& operator<<(std::ostream& s, Vector2i const& v)

{

S << "{" < v.x <<« ", "< vy << "}
return s;

} C

PROGRAMMING LANGUAGE

24 Nov 2015 68

C++ language by examples Wisnar

GPU Lab

Templated Two-vector type,

it can work with any type, that has the proper operators
defined:

template<typename T>
struct Vector?2

{

agensgue] ++) 9y

T X, ¥;
} e

24 Nov 2015 69

C++ language by examples Wisnar

GPU Lab

template<typename T>
Vector2<T> operator+(Vector2<T> const& u,

Vector2<T> const& v)
{ return Vector2<T>{ u.x+v.X, U.y+v.y }; }

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

template<typename T>
Vector2<T> operator-(Vector2<T>» const& u,

Vector2<T> const& v)
{ return Vector2<T>{ u.x-v.X, u.y-v.y }; }

24 Nov 2015 70

C++ language by examples @Eﬁi‘f{

Note: the “scalar” type here, is not restricted to be the element type of the vector,
rather, anything is fine,N{ it can be multiplied with the element of the vector!

_l
template<typename T\ typename C> ¥
Vector2<T> operator*(C const& c,]

Vector2<T> const& v) 8
{ return Vector2<T>{ c *\X;fi\i\; v.y }; 0} ;
Cor

PROGRAMMING LANGUAGE

24 Nov 2015 71

C++ language by examples Wisnar

GPU Lab

template<typename T, typename C>
Vector2<T> operator*(C const& c,

Vector2<T> const& v)
{ return Vector2<T>{ ¢ * v.x, ¢ * v.y }; }

agensgue] ++) 9y

Vector2<Vector2<int>> qg{ {-1, 1}, {3, 6} };
Vector2<Vector2<int>> r{ {1, -2}, {5, 2} };

3 fqg+r

-

++
— So code like this does what we expect! C

24 Nov 2015 72

C++ language by examples Wisnar

GPU Lab

Writing a nice and capable Vector class needs multiple building
blocks, we show some things to be aware of...

agensgue] ++) 9y

Some samples will be available on the webpage!

24 Nov 2015 73

C++ language by examples Wisnar

GPU Lab

How to store the elements?

template<typename T> Naked point.er, minimal sizg, fastest, you g
are responsible for everything! A
struct Vector H
new(], 5
{
size t n; delete][] \Only use them if you are sure! ®
T* data;
Vector(size t sz):n , data(new T[n]){}
~Vector{ delete[] “data; }
}, C++‘

24 Nov 2015 74

http://en.cppreference.com/w/cpp/language/new
http://en.cppreference.com/w/cpp/language/delete

C++ language by examples Wisnar

GPU Lab

How to store the elements?

Use a container, if you are lazy:) 5

template<typename T> 2

¢ + Vect and don’t want to bother with memory H

struc ector management too much 5

va

;

std: :vectorkT> data; ’
Vector(size t sz):data(sz){}

~\Vector = default;
C++11: explicit signal that the compiler generates the destructor ++‘

24 Nov 2015 75

C++ language by examples Wisnar

GPU Lab

How to store the elements?
template<typename T>

C++11: Use a smart pointer. S
struct Vector Minimal overhead o
Harder to make a mistake, H
{ and takes care of the deallocation &
va
size t n; g
std::unique ptr<T[]> data;
Vector(size t sz):n(sz),
data(std: :make unique<T[]>(n)){}
~\Vector = default;«
}; C++11: explicit signal that the compiler generates the destructor C ++‘

24 Nov 2015 76

C++ language by examples Wisnar

GPU Lab

How to access the elements?

These must be inside the class definition: =
(@)
struct Vector operator[] can only take 1 argument! (language limitation) g—»
va
{ /
------ — This one.will be used to write to the elements
T& operator[](size t i) { ...}
T const& operator[](size t i)const { ... }
}’ \ C++‘
This one will be used when only read is possible (on a const Vector) Brocvine LSO

24 Nov 2015 77

C++ language by examples

How to make it compatible with the standard library?

begin should point to the first element
struct Vector 5 P

{ / end should point after the last element
T* begin(){ return data.get();\'}
T* end() ¥ { return data.get()+n; }

T const* cbegin() const { return data.get(); }
T const* cend() const§£§:eturn data.get()+n; }

s

const versions for reading only!

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

i

PROGRAMMING LANGUAGE

78

C++ language by examples Wisnar

GPU Lab

* Notes: this does only work because naked pointers treated

specially in the standard library, and they by definition fulfil
the requirements of RandomAccesslterator

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

(In C++17, it will fulfil the even stronger Contiguouslterator concept)

Read more to see what is required to write a valid iterator
object.

24 Nov 2015 79

http://en.cppreference.com/w/cpp/concept/RandomAccessIterator
http://en.cppreference.com/w/cpp/iterator

C++ language by examples Wisnar

GPU Lab

* Problem:

The whole iterator based design is outdated...

agensgue] ++) 9y

This is known, the designers of the language started working

on STL2 and the proposed ranges are going to remedy the
situation...

Want something more composable? Check out the afternoon session...

24 Nov 2015 80

https://ericniebler.github.io/std/wg21/D4128.html

C++ language by examples Wisnar

GPU Lab

« Some counter examples:

_|

template<typename T> o
(@)

Vector<T> operator+(Vector<T> const& u, Vector<T> const& v) E
Q

{ Potentially uninitialized memory exists here, @

: : e 1 =
assert(u.size() == v.size() Vthe object will be initialized externally... &
Vector<T> result(u.size());
std::transform(u.cbegin(), u.cend(), v.cbegin(),

result.begin(),
](T\const& uu, T const& vv){ return uu + vv; });
return result; : . |
STL algorithms cannot create objects, they can C e
} only write to them... i

PROGRAMMING LANGUAGE

24 Nov 2015 81

C++ language by examples Wisnar

GPU Lab

« Some counter examples: a simple integrator

template<typename F, typename T>
auto TrapezoidIntegratorl(size t n, F const& f, T const& x0, T const& x1)

{

double sum = 0.0;
double dx = (x1 - x@) / (double)n;
for (size t 1 = @; i<n; i++)

{
¥

return sum * dx;

! e

PROGRAMMING LANGUAGE

agensgue] ++) 9y

sum += f(x0 + dx*(double)i);

24 Nov 2015 82

C++ language by examples Wisnar

GPU Lab

* Some counter examples: same integrator in STL

template<typename F, typename T>
auto TrapezoidIntegrator2(size t n, F const& f, T const& x0, T const& x1)

{
double dx = (x1 - x0) / (double)n;
size t 1 = 0;

agensgue] ++) 9y

std::vector<T> values(n);
std: :generate(values.begin(), values.end(),
[=, &i]{ auto res = f(x0 + dx * (double)i); ++i; return res; });
return dx * std::accumulate(values.begin(), values.end(), (T)0,
[](T const& a, T const& b){ return a+b; });

! fe

PROGRAMMING LANGUAGE

24 Nov 2015 83

C++ language by examples

* Some counter examples: same integrator in STL

template<typename F, typename T>
auto TrapezoidIntegrator2(size t n, F const& f, T const& x0, T const& x1)

{
double dx = (x1 - x0) / (double)n;
size t 1 = 0;

— — We need this temporary to use the algorithms!
std::vector<T> values(n);
std: :generate(values.begin(), values.end(),
[=, &i]{ auto res = f(x0 + dx * (double)i); ++i; return res; });
return dx * std::accumulate(values.begin(), values.end(), (T)0,
[](T const& a, T const& b){ return a+b; });
}s

24 Nov 2015

wisner
GPU Lab

agensgue] ++) 9y

Cov

PROGRAMMING LANGUAGE

84

C++ language by examples Wisnar

GPU Lab

* Some counter examples: simple integrator native vs STL.:

agensue] ++) 9y

The difference in this case (200000 points):

Compiler Naive implementation |STL idiomatic
implementation

MSVC 6 ms 8 ms
clang (windows) 10.5 ms 12.5 ms

D. Berényi - M. F. Nagy-Egri 24 Nov 2015 85

C++ language by examples Wisnar

GPU Lab

STL Threading:

Multi-threading became standard with C++11!

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

With all syncronisation and atomic operation primitives!

24 Nov 2015 86

http://en.cppreference.com/w/cpp/thread
http://en.cppreference.com/w/cpp/atomic

C++ language by examples Wisnar

GPU Lab

Here we only review one of the simplest-to-use primitive:

_I
=
D
(@]
+
+
Q
=2
va
c
Q
va
D

std::future<R> handle =
std::async(std::launch::async, [](...){...}, ...);

24 Nov 2015 87

http://en.cppreference.com/w/cpp/thread/async

C++ language by examples Wisnar

GPU Lab

Here we only review one of the simplest-to-use primitive:

This signals, that we want to run This lambda is the function,
our new thread separately from that will execute in the new
this current one thread

These arguments will be
passed to the lambda
when the thread starts

agensgue] ++) 9y

| ¥
std::async(std::launch::async, [J(...){...}, ...);

24 Nov 2015 88

http://en.cppreference.com/w/cpp/thread/async

C++ language by examples @Eﬁi‘:{

Here we only review one of the simplest-to-use primitive:

_|

R should be the return value of the lambda i

std::future is an object that will ¥

hold the result of the thread 5

when it is finshed! e

|
std: :future<R> handle =

3

PROGRAMMING LANGUAGE

24 Nov 2015 89

http://en.cppreference.com/w/cpp/thread/async

C++ language by examples Wisnar

GPU Lab

Here we only review one of the simplest-to-use primitive:

-~
std: :future<int> handle =
std::async(std::launch::async,
[](int a, int b){ return a+b; }, 2, 5);
//do stuff / .get() will only return when
int result = handle.get(); the thread is finished! C+a

PROGRAMMING LANGUAGE

24 Nov 2015 90

http://en.cppreference.com/w/cpp/thread/async

C++ language by examples Wisnar

GPU Lab

Here we only review one of the simplest-to-use primitive:

You can create an array of futures, and launch multiple thread
in a loop.

agensgue] ++) 9y

Than wait for them in a loop. See the muti-threaded integrator
example.

This gives you the maximum

number of threads that your
unsigned int nMaxThreads = / computer can run simultaneously.

std: :thread: :hardware_concurrency(); Cr

24 Nov 2015 91

http://en.cppreference.com/w/cpp/thread/async

C++ language by examples Wisnar

GPU Lab

Atomic operations support library (C++11)

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

Atomics are operations that are guaranteed that they will not
be interrupted by other threads.

|.e. safe to use in multithreading environments for a lockless sharing of
resources.

24 Nov 2015 92

http://en.cppreference.com/w/cpp/atomic

C++ language by examples Wimnar

GPU Lab

Atomic operations support library (C++11)

You can make any type atomic, but it will be only efficient for
built in types, that are supported by the hw and OS.

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

Initialization and many operations are supported, like load, exchange,
add/sub/and/or/xor

24 Nov 2015 93

http://en.cppreference.com/w/cpp/atomic

C++ language by examples Wisnar

GPU Lab

Regular expressions library (C++11):

Need the functionality of awk / grep for finding some complex pattern in
a string? No need for nasty hacks:

agensgue] ++) 9y

#include <regex>

std::string text = "Quick brown fox";
std::regex vowel re("alelilo|u");
std::regex_replace(text, vowel re, "[$&]");

24 Nov 2015 94

http://en.cppreference.com/w/cpp/regex

C++ language Wisnar

GPU Lab

If you have a question:

» google for it
* Check for the problem on stackoverflow.com

» Read the relevant parts of cppreference.com
* Ask us©

_I
=
D
(@)
+
+
Q
=2
va
c
Q
va
D

24 Nov 2015 95

http://www.google.com/
stackoverflow
http://en.cppreference.com/

