
All colors of PhysicsAll colors of PhysicsAll colors of Physics

General Pourpose GPU Computing

And a horde of APIs

Máté Ferenc Nagy-Egri

Wigner GPU Lab

What is an API?

• Application Programming Interface

– It is the surface of a library with which the programmer
interacts

– The library exposes types and functions with certain gurantees
and features that the programmer wishes to use

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 2

HORDE OF APIS

FOR THE HOOOOOOORDEEE!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 3

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 4

Non-exhaustive list of APIs

C++AMP

Compute Unified Device Architecture

• Nvidia’s answer to the increasing developer pressure, that they
want to do GPGPU without having to jump through flaming hoops

• First version released in 2007
• Two levels of access

– C driver API
– C language extension, in which special operators appear to launch kernels

and separate host and device side code (starting from CUDA 7.0 partial
C++11 support)

• Closed source technology, it is always tuned for the actual
generation of Nvidia hardware

• Google got fed up with the slow pace at which the canonical
compiler, ‚nvcc’ is gaining features, so they mainlined their fork of
Clang with CUDA language support

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 5

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 6

__device__ __global__ saxpy(double a, const double* x, double* y)

{

y[i] = a * x[i] + y[i];

}

int main()

{

size_t length = 65536;

size_t size = length * sizeof(double);

double* x = (double*)malloc(size), *y = (double*)malloc(size);

double** x_dev = (double**)cudaMalloc(size), **y_dev = (double**)cudaMalloc(size);

cudaMemcpy(x_dev, x, size, cudaMemcpyHostToDevice);

cudaMemcpy(y_dev, y, size, cudaMemcpyHostToDevice);

saxpy<<<length, 1>>>(2.0, x_dev, y_dev)

}

Compute Unified Device Architecture

Open Computing Language

• Apple Inc.’s answer to the success of CUDA, but because
of high interest, they handed over the technology to the
Khronos Consortium

• First version released in 2009

• Separate host and device code
– C API for the host side code

– C99 extension for device code (starting from OpenCL 2.1 static
C++14)

• Open standard, anyone can implement it and participate
in development of the standard (as our we)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 7

saxpy.cpp

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 8

saxpy.cl

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

__kernel void saxpy(double a,

__global double* x,

__global double* y)

{

size_t i = get_global_id(0);

y[i] = a * x[i] + y[i];

}

Open Computing Language

saxpy.cpp

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 9

int main()

{

cl_double a = 2.0;

std::vector<cl_double> x(length, 1.0);

std::vector<cl_double> y(length, 1.0);

cl::Buffer x_buf(context, x.begin(), x.end(), true);

cl::Buffer y_buf(context, x.begin(), x.end(), false);

cl::KernelFunctor<double, cl::Buffer, cl::Buffer> kernel(program, „saxpy");

kernel(cl::EnqueueArgs(command_queue,

cl::NDRange(static_cast<cl::size_type>(x.size()))),

a,

x_buf,

y_buf).wait();

}

Open Computing Language

DirectX Compute Shader

• Microsoft’s leading 3D graphics API’s GPGPU spin-off

• First released in 2009, debut in DirectX 11

• Integrates in a trivial manner into the pipeline

• Host side C++ API reflects graphics usage scenarios

• Device side language is HLSL (High-level Shading
Language)

• DirectX 12 introduces Shader Model 6.0

– Clang fork for C++ shaders inbound (developed by MS)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 10

Open Grahpics Library

• The Khronos variant of Microsoft’s Direct Compute

• First release in 2012, debut with OpenGL 4.3

• Integrates in a trivial manner into the pipeline

• Host side C API is ARCHAIC!
• Device side language is GLSL (OpenGL Shading

Language)

– Does not seem that this will change, at least in a portable
manner

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 11

C++ Accelerated Massive Parallelism

• Concept API for standardizing GPGPU parallelism

• Developed by Microsoft, first release in 2012

• C++ language extension that built on the current state
of C++ concepts

• Does not restrict the format of the intermediate injected
into the binary

• (It’s future remains a mystery)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 12

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 13

double a = 2.0;

std::vector<double> x(length, 1.0);

std::vector<double> y(length, 1.0);

concurrency::array<double> arr_x(concurrency::extent<1>(length), x.cbegin(), x.cend(), acc_view);

concurrency::array<double> arr_y(concurrency::extent<1>(length), x.cbegin(), x.cend(), acc_view);

concurrency::parallel_for_each(acc_view,

arr_x.get_extent(),

[a,

x_view = concurrency::array_view<double>(arr_x),

y_view = concurrency::array_view<double>(arr_y)]

(const concurrency::index<1> idx) restrict(amp,cpu)

{

y_view[idx] = a * x_view[idx] + y_view[idx];

});

Open Computing Language

Open Multi-Processing

• Handled by an independant consortium (OpenMP
Architecture Review Board)

• Originally, a NUMA-aware CPU parallel technology

• Since 2013 and its version 4.0 it supports GPU offload

• Open standard, anyone can implement it

• C, C++, Fortran languages supported through #pragma
directives

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 14

Open Accelerators

• Nvidia initiative to create an OpenMP-like pragma driven
C, C++, Fortran compatible GPGPU API

• Open standard, anyone can implement it

• In 2013 a study layed the foundations of how to merge
OpenACC contstructs into OpenMP

– Perhaps some later version will feature the fruits

• The newest 2.0 version is supported by GCC 5 and up

– Both MP and ACC may be compiled to PTX or HSAIL

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 15

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 16

double a = 2.0;

std::vector<double> x(length, 1.0);

std::vector<double> y(length, 1.0);

#pragma omp target

{

#pragma omp parallel for

for (int i = 0; i < length; ++i) y[i] = a * x[i] + y[i];

}

Open MP/ACC

SYCL

• Following up on the criticism OpenCL has recieved, SYCL is a
template library
– v1.2 public beta may be downloaded here
– v2.2 reference implementation may be obtained from Github

• Host and device code separate through the use of the
template library
– No language extension!
– Pure CPU implementation may exist (triSYCL is such an

implementation)

• The means of compiling is not specified, though the format
of the injected intermediate is
– Under the hood relies on a functioning OpenCL implementation

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 17

https://www.codeplay.com/products/computesuite/computecpp
https://github.com/keryell/triSYCL

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 18

double a = 2.0;

std::vector<double> x(length, 1.0);

std::vector<double> y(length, 1.0);

cl::sycl::buffer<double, 1> x_buf(x.data(), cl::sycl::range<1> { length });

cl::sycl::buffer<double, 1> y_buf(y.data(), cl::sycl::range<1> { length });

cl::sycl::queue().submit([&](cl::sycl::handler &cgh)

{

auto x_view = x_buf.get_access<access::mode::read>(cgh);

auto y_view = y_buf.get_access<access::mode::readwrite>(cgh);

cgh.parallel_for<class saxpy>(cl::sycl::range<1>{ length },

[=](cl::sycl::id<1> idx)

{

y_view[index] = a * x_view[index] + y_view[index];

});

});

SYCL

Heterogeneous Compute Compiler

• AMD at the end of 2015 announced their Boltzmann
Initiative which consists of multiple tools

– ROCm (Radeon Open Compute), a set of middleware tools
(languages/compilers) which serve as the basis of interaction
between software and hardware

– HCC is a Clang fork, which is capable of consuming multiple
input APIs and emit code for the ROCm middleware

• C++AMP 1.2, OpenMP 3.1, Parallel STL

• Open platform, can be implemented by anyone

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 19

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 20

double a = 2.0;

std::vector<double> x(length, 1.0);

std::vector<double> y(length, 1.0);

hc::array_view<double, 1> x_view(length, x.data());

hc::array_view<double, 1> y_view(length, y.data());

hc::parallel_for_each(hc::extent<1>(length),

[=](hc::index<1> i) [[hc]]

{

y_view[i] = a * x_view[i] + y_view[i];

});

Heterogeneous Compute Compiler

THANK YOU FOR YOUR ATTENTION

Questions?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 21

