Quisner

General Pourpose GPU Computing

All colors of Physics

What is an API? Quisner

« Application Programming Interface

— It is the surface of a library with which the programmer
Interacts

— The library exposes types and functions with certain gurantees
and features that the programmer wishes to use

»

wicsner

FOR THE HOOOOOOORDEEE!

HORDE OF APIS

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 3

Non-exhaustive list of APls @sner

@ZDVIDIA@ .
BN = CH+AMP

P penGL.

SYCL
OpenACC OpenMP .

Directives for Accelerators

11/15/2016 Lectures on Modern Scientific Computing, 2

Compute Unified Device Architecture Qﬁsner

Nvidia’s answer to the increasing developer ﬁressure, that they
want to do GPGPU without having to jump through flaming hoops

First version released in 2007

Two levels of access

— C driver API

— C language extension, in which special operators appear to launch kernels
and separate host and device side code (starting from CUDA 7.0 partial
C++11 support)

Closed source technology, it is always tuned for the actual
generation of Nvidia hardware

Google got fed up with the slow pace at which the canonical
compiler, ,nvcc’ is gaining features, so they mainlined their fork of
Clang with CUDA language support

o

Compute Unified Device Architecture yisner

saxpy (

[1] = a * x[1] + y[i];

main()

length = 65536;
size = length * ();

*x = (*Imalloc(size), *y = (*Imalloc(size);
** x _dev = (**)cudaMalloc(size), **y dev = (**)cudaMalloc(size);

cudaMemcpy(x_dev, x, size, IE
cudaMemcpy(y_dev, y, size,)

saxpy<<<length, 1>>>(2.0, x _dev, y dev)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Open Computing Language Quisner

Apple Inc.'s answer to the success of CUDA, but because

of high interest, they handed over the technology to the
Khronos Consortium

First version released in 2009

Separate host and device code
— C API for the host side code

— C99 extension for device code (starting from OpenCL 2.1 static
C++14)

Open standard, anyone can implement it and participate
in development of the standard (as our we)

Open Computing Language @sner

saxpy.cpp saxpy.cl

#pragma cl khr_fp64 :

J

1 = get global id(9);

* x[1i] + y[i];

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 8

Open Computing Language Quisner

saxpy.cpp

main()

cl double a = 2.0;
std::vector<cl double> x(length, 1.0);
std::vector<cl double> y(length, 1.0);

cl::Buffer x_buf(context, x.begin(), x.end(), true);
cl::Buffer y _buf(context, x.begin(), x.end(), false);
cl: :KernelFunctor< , cl::Buffer, cl::Buffer> kernel(program, ,,saxpy");

kernel(cl: :EnqueueArgs(command_queue,
cl: :NDRange(<cl::size type>(x.size()))),
a,
X_buf,
y buf).wait();

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

DirectX Compute Shader Qﬁsner

Microsoft’s leading 3D graphics API's GPGPU spin-off
First released in 2009, debut in DirectX 11
Integrates in a trivial manner into the pipeline

Host side C++ API reflects graphics usage scenarios

Device side language is HLSL (High-level Shading
_anguage)

DirectX 12 introduces Shader Model 6.0

— Clang fork for C++ shaders inbound (developed by MS)

Open Grahpics Library

Quisner

The Khronos variant of Microsoft’s
First release in 2012, debut with O

Integrates in a trivial manner into the pi

Host side C API is ARCHAIC!

_anguage)

nenG

_ 4.3

heline

Device side language is GLSL (OpenGL Shading

Direct Compute

— Does not seem that this will change, at least in a portable

manner

C++ Accelerated Massive Parallelism Qﬁsner

Concept API for standardizing GPGPU parallelism
Developed by Microsoft, first release in 2012

C++ language extension that built on the current state
of C++ concepts

Does not restrict the format of the intermediate injected
into the binary

(It's future remains a mystery)

Open Computing Language Quisner

a = 2.0;
std: :vector< > X(length, 1.0);
std: :vector< > y(length, 1.0);
concurrency: :array< > arr_x(concurrency: :extent<1l>(length), x.cbegin(), x.cend(), acc_view);
concurrency: :array< > arr_y(concurrency: :extent<1>(length), x.cbegin(), x.cend(), acc _view);

concurrency: :parallel for_each(acc_view,
arr_x.get _extent(),

[a,
X_view = concurrency::array_view< >(arr_x),
y view = concurrency::array view< >(arr_y)]
(concurrency: :index<1>) (s)
{
y view|] = a * x view|] + y view| 1
1)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Open Multi-Processing Qﬁsner

« Handled by an independant consortium (OpenMP
Architecture Review Board)

« Originally, a NUMA-aware CPU parallel technology
« Since 2013 and its version 4.0 it supports GPU offload
« Open standard, anyone can implement it

« C, C++, Fortran languages supported through #pragma
directives

Open Accelerators Quisner

Nvidia initiative to create an OpenMP-like pragma driven
C, C++, Fortran compatible GPGPU API

Open standard, anyone can implement it

In 2013 a study layed the foundations of how to merge
OpenACC contstructs into OpenMP

— Perhaps some later version will feature the fruits

The newest 2.0 version is supported by GCC 5 and up
— Both MP and ACC may be compiled to PTX or HSAIL

Quisner

a = 2.0;
std: :vector< > X(length, 1.0);
std: :vector< > y(length, 1.0);

#pragma omp target
{
#pragma omp parallel for
for (i=0; 1< length; ++i) y[i] = a * x[1i] + y[i];

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

SYCL Quisner

« Following up on the criticism OpenCL has recieved, SYCL is a
template library

— v1.2 public beta may be downloaded here

— v2.2 reference implementation may be obtained from Github

» Host and device code separate through the use of the
template library
— No language extension!

— Pure CPU implementation may exist (triSYCL is such an
implementation)

» The means of compiling is not specified, though the format
of the injected intermediate is
— Under the hood relies on a functioning OpenCL implementation

https://www.codeplay.com/products/computesuite/computecpp
https://github.com/keryell/triSYCL

Quisner

a = 2.0;
std: :vector< > X(length, 1.0);
std: :vector< > y(length, 1.0);
cl::sycl::buffer< , 1> x_buf(x.data(), cl::sycl::range<1l> { length });
cl::sycl::buffer< , 1> y buf(y.data(), cl::sycl::range<1> { length });

cl::sycl::queue().submit([&](cl::sycl::handler &cgh)

{
X_view = x_buf.get access<access::mode: :read>();
y view = y buf.get access<access::mode::readwrite>();
.parallel for< saxpy>(cl::sycl::range<1>{ length },
[=](cl::sycl::id<1>)
{
y view[] = a* x view|[] + y view| 1
1)
1)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Heterogeneous Compute Compiler Qﬁsner

« AMD at the end of 2015 announced their Boltzmann
Initiative which consists of multiple tools
— ROCm (Radeon Open Compute), a set of middleware tools

(languages/compilers) which serve as the basis of interaction
between software and hardware

— HCC is a Clang fork, which is capable of consuming multiple
input APIs and emit code for the ROCm middleware

« C++AMP 1.2, OpenMP 3.1, Parallel STL
« Open platform, can be implemented by anyone

Heterogeneous Compute Compiler Qﬁsner

a = 2.0;
std: :vector< > X(length, 1.0);
std: :vector< > y(length, 1.0);
hc::array_view< , 1> x view(length, x.data());
hc::array_view< , 1> y view(length, y.data());

hc::parallel for_each(hc::extent<1>(length),
[=](hc::index<1> i) [[hc]]

y view[i] = a * x view[i] + y view[i];

1)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Quisner

THANK YOU FOR YOUR ATTENTION

