
Optimization
Lectures on Modern Scientific Programming 2016

Dániel Berényi

Wigner GPU Lab

Optimization - What? When? How?

Optimization is tailoring some parameters to a desired value
But what?

• Paid by work hours? Optimize work to take longer...

• Paid by lines of code? Maximize line breaks in the code

• Developing for an embedded system? Minimize memory usage

• Working on a HPC simulation? Tune for time...

11/15/2016 Lectures on Modern Scientific Programming 2016 2

Optimization - What? When? How?

Optimization is tailoring some parameters to a desired value
But what?

• Paid by work hours? Optimize work to take longer...

• Paid by lines of code? Maximize line breaks in the code

• Developing for an embedded system? Minimize memory usage

• Working on a HPC simulation? Tune for time

11/15/2016 Lectures on Modern Scientific Programming 2016 3

Optimization - What? When? How?

Optimization for time... What time?

11/15/2016 Lectures on Modern Scientific Programming 2016 4

Optimization - What? When? How?

Optimization for time... What time?

Project life time

11/15/2016 Lectures on Modern Scientific Programming 2016 5

Optimization - What? When? How?

Optimization for time... What time?

Project life time

Development time Execution time

11/15/2016 Lectures on Modern Scientific Programming 2016 6

Optimization - What? When? How?

Optimization for time... What time?

• How long will your program run?

Project life time

Development time Execution time

11/15/2016 Lectures on Modern Scientific Programming 2016 7

Optimization - What? When? How?

Optimization for time... What time?

Only consider delving into optimizing program execution:

• If it is expected to run for a much-much longer time than the
development (typically weeks, months, on a cluster of hundreds of cores)

• Or when low latency is of utmost importance

(online data processing and response)

11/15/2016 Lectures on Modern Scientific Programming 2016 8

Optimization - What? When? How?

Let’s start optimizing!

11/15/2016 Lectures on Modern Scientific Programming 2016 9

Optimization - What? When? How?

Let’s start optimizing!

• Step 1:

11/15/2016 Lectures on Modern Scientific Programming 2016 10

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!

11/15/2016 Lectures on Modern Scientific Programming 2016 11

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!

Premature optimization is the root of all evil

(worse than shared mutable state!)

<Insert scary image here>

11/15/2016 Lectures on Modern Scientific Programming 2016 12

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage

11/15/2016 Lectures on Modern Scientific Programming 2016 13

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage Read that goddamn manual at least ONCE

11/15/2016 Lectures on Modern Scientific Programming 2016 14

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage

• Verify edge cases

• Check dependence on environment

• Check your floating point numbers (overflow, loss of precision, INF, NAN)

11/15/2016 Lectures on Modern Scientific Programming 2016 15

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code
• Check memory management
• Check API and library usage
• Verify edge cases
• Check dependence on environment
• Check your floating point numbers (overflow, loss of precision, INF, NAN)
• Check your includes and definitions especially in multiple translation units
• Check the versions and builds of the libraries you’re linking
• Verify argument passing to different languages, interfaces...

11/15/2016 Lectures on Modern Scientific Programming 2016 16

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...

11/15/2016 Lectures on Modern Scientific Programming 2016 17

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...
• Verify your code in debug and non-debug (release) builds

• Check uninitialized variables

• Verify your code w.r.t. 32 - 64 bit width

• Verify handling of exceptional cases, null pointers

11/15/2016 Lectures on Modern Scientific Programming 2016 18

Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...
• Verify your code in debug and non-debug (release) builds

• Check uninitialized variables

• Verify your code w.r.t. 32 - 64 bit width

• Verify handling of exceptional cases, null pointers

• Did I mention checking your memory management? Allocations? Deallocations?

• Check floating point precision settings

• Check your code with different compilers

• Turn on more or all warnings

11/15/2016 Lectures on Modern Scientific Programming 2016 19

Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure

11/15/2016 Lectures on Modern Scientific Programming 2016 20

Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure

• Back up your working code!
• So you can compare optimized versions with the original

11/15/2016 Lectures on Modern Scientific Programming 2016 21

Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure

• Back up your working code!
• So you can compare optimized versions with the original

NO! Not speed-wise

But whether they do the same thing!

11/15/2016 Lectures on Modern Scientific Programming 2016 22

Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code
11/15/2016 Lectures on Modern Scientific Programming 2016 23

Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code
11/15/2016 Lectures on Modern Scientific Programming 2016 24

Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code

We’ll focus on this part

11/15/2016 Lectures on Modern Scientific Programming 2016 25

Time measurement

How fast is my code actually?

11/15/2016 Lectures on Modern Scientific Programming 2016 26

Time measurement

How fast is my code actually?

• One of the best and standard ways to measure time now is to use the
standard library!

11/15/2016 Lectures on Modern Scientific Programming 2016 27

Time measurement

#include <chrono>
auto tmark(){

return std::chrono::high_resolution_clock::now();
}

template<typename T1, typename T2>
auto delta_time(T1&& t1, T2&& t2)
{

return
std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1)

.count()/1000.0;
}

11/15/2016 Lectures on Modern Scientific Programming 2016 28

Time measurement

auto t0 = tmark();

//fancy code to be measured

auto t1 = tmark();

std::cout << "My calculation took: "

<< delta_time(t0, t1) << " usecs.\n";

11/15/2016 Lectures on Modern Scientific Programming 2016 29

Time measurement

Time measurement can be tricky...

• System calls’ delay depends on many factors (OS load)

• Time measurement itself is (light) a system call

11/15/2016 Lectures on Modern Scientific Programming 2016 30

Time measurement

Time measurement can be tricky...

• System calls’ delay depends on many factors (OS load)

• Time measurement itself is (light) a system call

• OS multi threading may put a thread aside, but measurement may not be corrected

• OS may put a thread from one core to the other measurements go frenzy

• The hardware clock underlying the measurement may do unexpected things
especially on multicore systems
11/15/2016 Lectures on Modern Scientific Programming 2016 31

Time measurement

The distribution of measured times can be absolutely non-trivial:

Memory allocation (300 kB) [µs]Trigonometric sum (50 terms) [µs]

11/15/2016 Lectures on Modern Scientific Programming 2016 32

Time measurement

• As a rule of thumb we usually measure code multiple times
(tens-hundreds) and take the minimum

• OS and scheduling noises expected to just increase the execution time

• so the minimum should be a good estimator for the time of the actual
code

11/15/2016 Lectures on Modern Scientific Programming 2016 33

Optimization - What? When? How?

Cheapest optimizations:

11/15/2016 Lectures on Modern Scientific Programming 2016 34

Optimization - What? When? How?

Cheapest optimizations:

Know your compiler

Remember:

• There are multiple levels of parallelism available:

• Bit-level
• Instruction-level
• Vector-level
• Task/Device-level
• Process/Cluster-level

Taken care by the processor and the compiler

11/15/2016 Lectures on Modern Scientific Programming 2016 35

Optimization - What? When? How?

Cheapest optimizations:

Know your compiler

Remember:

• There are multiple levels of parallelism available:

• Bit-level
• Instruction-level
• Vector-level
• Task/Device-level
• Process/Cluster-level

Taken care by the processor and the compiler

11/15/2016 Lectures on Modern Scientific Programming 2016 36

Optimization - What? When? How?

Cheapest optimizations:

• Compiler optimizations! Just a flip of switch
• Enable optimizations (-O3)

• Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)

• Enable enhanced instruction set usage (SSE, AVX, ...)

• Enable / tune vectorization efficiency

Check your compiler’s manual!

11/15/2016 Lectures on Modern Scientific Programming 2016 37

Optimization - What? When? How?

Cheapest optimizations:

• Compiler optimizations! Just a flip of switch
• Enable optimizations (-O3)
• Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)
• Enable enhanced instruction set usage (SSE, AVX, ...)
• Enable / tune vectorization efficiency

Check your compiler’s manual!

Verify program correctness! Some optimizations may alter the working
of your program, especially if your are using some hacks...

11/15/2016 Lectures on Modern Scientific Programming 2016 38

Optimization – x86 instruction timings

•
I

Operation Latency

Shift / Rot 1-4

AND / OR / XOR 1-4

Compare/test 1-4

Call (Ret) 5 (8)

Integer add/sub 1-8

Integer mul 3-18

Integer div 32-103

Operation Latency

FADD/FSUB/FABS 2-6

FMUL 7-8

FDIV 23-44

FSQRT 23-44

FSIN, FCOS 160-280

FSINCOS 160-250

FPTAN 225-300

FPATAN 150-300

FSCALE 60

FYL2X/FYL2XP1 100-250

Only the ratios are important!

Operation Latency

MMX 1-9

SSE Integer 1-9

SSE single + - logical 1-12

SSE single mul 3-7

SSE single div/sqrt 10-40

SSE2 double simple ops 1-12

SSE2 double mul 3-7

SSE2 double div/sqrt 14-70

SSE2 128bit int 1-10

SSE3 / SSE4 1-14

AVX figures are approximately the same as SSE

11/15/2016 Lectures on Modern Scientific Programming 2016 39

Optimization – high level timings
Operation Time [ns] Time [ms]

1 clock cycle on a 3 GHz processor 1 1e-6

L1 cache access 0.5 5e-7

Branch misprediction 5 5e-6

L2 cache access 7 7e-6

Mutex lock/unlock 25 2,5e-5

RAM access 100 0,0001

1kB data compression with Snappy 3000 0,003

1kB data transmission on a 1 Gbps network 10000 0,01

4 kB data random access read from an SSD 150000 0,15

1 MB data contiguous read from RAM 250000 0,25

Roundtrip in a datacenter 500000 0,5

1 MB data contiguous read from SSD 1e6 1

Hard disk ‚seek’ (search) time 1e7 10

1 MB data contiguous read from a hard disk 2e7 20

TCP/IP packet travel time between continents 1,5e8 150

So
u

rce
an

d
 vid

eo
 to

w
atch

11/15/2016 Lectures on Modern Scientific Programming 2016 40

http://en.wikipedia.org/wiki/Snappy_(software)
http://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics#SEEKTIME
https://www.youtube.com/watch?v=fHNmRkzxHWs&t=2197

Optimization - Timings

Why is it good to roughly know the timings?

• One can approximately design the program:
• Where different data should be located

(most accessed in cache and memory, big or/but rarely needed on disk)

• What expressions should be preferred in formulas

11/15/2016 Lectures on Modern Scientific Programming 2016 41

Optimization - Timings

What expressions should be preferred in formulas?

We often see people copy-pasting formulas from Mathematica

The problem is that many formulas can be very much simplified by
introducing new temporary sub expressions

The compiler is not expected to know all math identities and cannot
optimize your formulas as well as you could...

11/15/2016 Lectures on Modern Scientific Programming 2016 42

Optimization - Timings

Formula:

෍

𝑗=1

𝑛

sin
𝜋𝑗

𝑁 + 1
𝑓 cos

𝜋𝑗

𝑁 + 1
෍

𝑘=1

𝑛

sin
𝜋𝑘𝑗

𝑁 + 1

1 − cos(𝜋k)

𝑘

11/15/2016 Lectures on Modern Scientific Programming 2016 43

Optimization - Timings

Formula:

෍

𝑗=1

𝑛

sin
𝜋𝑗

𝑁 + 1
𝑓 cos

𝜋𝑗

𝑁 + 1
෍

𝑘=1

𝑛

sin
𝜋𝑘𝑗

𝑁 + 1

1 − cos(𝜋k)

𝑘

Same factor is used multiple times, lets factor out!

11/15/2016 Lectures on Modern Scientific Programming 2016 44

Optimization - Timings

Formula:

Let qj =
𝜋𝑗

𝑁+1

෍

𝑗=1

𝑛

sin 𝑞𝑗 𝑓 cos 𝑞𝑗 ෍

𝑘=1

𝑛

sin 𝑘𝑞𝑗
1 − cos(𝜋k)

𝑘

11/15/2016 Lectures on Modern Scientific Programming 2016 45

Optimization - Timings

Formula:

Let qj =
𝜋𝑗

𝑁+1

෍

𝑗=1

𝑛

sin 𝑞𝑗 𝑓 cos 𝑞𝑗 ෍

𝑘=1

𝑛

sin 𝑘𝑞𝑗
1 − cos(𝜋k)

𝑘

Think more... cos is expensive, and here it is only
evaluated at integer multiplies of 𝜋

1 − cos(𝜋k) = (k%2==1 ? 2.0/k : 0.0)

11/15/2016 Lectures on Modern Scientific Programming 2016 46

Optimization - Timings

More complex formulas may be less trivial to refactor and optimize, but
you compiler will thank you!

Do not worry about temporaries, the compiler will remove them

Do worry about complex special function expressions and use identities
to simplify them

11/15/2016 Lectures on Modern Scientific Programming 2016 47

Optimization – Memory!

Beginner-Intermediate optimization:

Memory

11/15/2016 Lectures on Modern Scientific Programming 2016 48

Optimization – Memory!

Beginner-Intermediate optimization:

In fact, 80% of optimizations

are dealing with data access and data organization in memory

11/15/2016 Lectures on Modern Scientific Programming 2016 49

Optimization – Memory!

Beginner-Intermediate optimization:

In fact, 80% of optimizations

are dealing with data access and data organization in memory

Accordingly:

80% of performance issues we meet are related to memory

management and data access problems

11/15/2016 Lectures on Modern Scientific Programming 2016 50

Optimization – Memory!

Question:

• Which one takes longer:
• heap memory allocation or

• zeroing out the allocated memory?

11/15/2016 Lectures on Modern Scientific Programming 2016 51

Optimization – Memory!

Answer:

of doubles

Time [µs]

11/15/2016 Lectures on Modern Scientific Programming 2016 52

Optimization – Memory!

Conclusion: dynamic heap memory allocation is slow...

Solution: avoid dynamic heap memory allocation

11/15/2016 Lectures on Modern Scientific Programming 2016 53

Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

}

11/15/2016 Lectures on Modern Scientific Programming 2016 54

Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

}

}

11/15/2016 Lectures on Modern Scientific Programming 2016 55

Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

std::vector<double> vec(...);

}

}

}

11/15/2016 Lectures on Modern Scientific Programming 2016 56

Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

std::vector<double> vec(...);

}

}

}

You’ve just payed
N^3 times the
allocation cost

11/15/2016 Lectures on Modern Scientific Programming 2016 57

Optimization – Memory!

std::vector<double> vec(...);

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

}

}

}

If possible, move the
allocation out of the loop!

11/15/2016 Lectures on Modern Scientific Programming 2016 58

Optimization – Memory!

C++ standard library containers that by default use
dynamical heap allocations:

• std::vector, std::list, std::set, ...

Containers that do not use dynamical heap allocations:

• std::array<T, n>

11/15/2016 Lectures on Modern Scientific Programming 2016 59

Optimization – Memory!

If you need to use dynamical heap allocation

• Try to allocate at the beginning of complex calculations

• If you do not know exactly how much memory you’ll need,
try to reasonably well estimate it!

11/15/2016 Lectures on Modern Scientific Programming 2016 60

Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!

11/15/2016 Lectures on Modern Scientific Programming 2016 61

Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!

Sequential push_back:

#double std::vector
[ms]

std::list
[ms]

10k 0.3 1.1

1M 32 90

10M 300 920

100M 2700 9300

11/15/2016 Lectures on Modern Scientific Programming 2016 62

Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!

Sequential push_back:

#double std::vector
[ms]

std::list
[ms]

One time
alloc [ms]

10k 0.3 1.1 0.05

1M 32 90 5

10M 300 920 50

100M 2700 9300 500

11/15/2016 Lectures on Modern Scientific Programming 2016 63

Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

When comparing other studies (link, link), we can conclude:

The only case, when std::list is faster, when large amount of data
need to be inserted or removed from the beginning or middle of the
dataset.

11/15/2016 Lectures on Modern Scientific Programming 2016 64

http://baptiste-wicht.com/posts/2012/11/cpp-benchmark-vector-vs-list.html
https://dzone.com/articles/c-benchmark-–-stdvector-vs

Optimization – Memory!

If you’re absolutely limited by allocation speed, you choices:

• Analyze the distribution of your allocations

• Write a memory manager yourself, that is tailored for those statistics

• And overload new/delete to use your memory manager and not malloc

Or:

• Use a pre written memory manager (tcmalloc, jemalloc)

• There exist tools, that intercept c library calls and are much better than
malloc for frequent small allocations...

11/15/2016 Lectures on Modern Scientific Programming 2016 65

https://github.com/gperftools/gperftools
http://jemalloc.net/

Optimization – Memory!

Data access!

11/15/2016 Lectures on Modern Scientific Programming 2016 66

Optimization – Memory!

Data access!

Sequential access vs gapped access (we access only every Nth element)!

11/15/2016 Lectures on Modern Scientific Programming 2016 67

Optimization – Memory!

Data access!

Sequential
access vs gapped
access

(we access only
every Nth
element)!

N (step size)

Time [ms]

11/15/2016 Lectures on Modern Scientific Programming 2016 68

Optimization – Memory!

Data access!

What is going on?

We are doing
much less work!

N (step size)

Time [ms]

11/15/2016 Lectures on Modern Scientific Programming 2016 69

Optimization – Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

Memory offset

The element
you accessed

11/15/2016 Lectures on Modern Scientific Programming 2016 70

Optimization – Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

Memory offset

The element
you accessed

The data actually transferred from memory to cache (prefetch)

11/15/2016 Lectures on Modern Scientific Programming 2016 71

Optimization – Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

Memory offset

The element
you accessed

If you access all elements received,
most likely they will be in the cache

11/15/2016 Lectures on Modern Scientific Programming 2016 72

Optimization – Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

Memory offset

The element
you accessed

If you make a long jump for the next element,
everything is need to be read again...

11/15/2016 Lectures on Modern Scientific Programming 2016 73

Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array

11/15/2016 Lectures on Modern Scientific Programming 2016 74

Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array

• Multi dimensional arrays

11/15/2016 Lectures on Modern Scientific Programming 2016 75

Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array

• Multi dimensional arrays

• The combination of the above

11/15/2016 Lectures on Modern Scientific Programming 2016 76

Optimization – Memory!

Accessing only some members of a struct:

struct Particle
{

std::array<double, 3> position;
std::array<double, 3> velocity;
std::array<double, 3> total_force;
double mass, radius;

};
std::vector<Particle> particles;

11/15/2016 Lectures on Modern Scientific Programming 2016 77

Optimization – Memory!

Accessing only some members of a
struct:

Consider a force calculation...

Usually only position and mass is
needed for that... This means:

struct Particle
{

std::array<double, 3> position;
std::array<double, 3> velocity;
std::array<double, 3> total_force;
double mass, radius;

};
std::vector<Particle> particles;

Pos (24 bytes) Vel (24 bytes) F (24 bytes) m (8b) r (8b) Pos (24 bytes) Vel (24 bytes) F (24 bytes)

You only access these!

11/15/2016 Lectures on Modern Scientific Programming 2016 78

Optimization – Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{

std::vector< std::array<double, 3> > positions;

std::vector< std::array<double, 3> > velocities;

std::vector< std::array<double, 3> > total_forces;

std::vector<double> masses;

std::vector<double> radii;

};

Particles particles;

11/15/2016 Lectures on Modern Scientific Programming 2016 79

Optimization – Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{

std::vector< std::array<double, 3> > positions;

std::vector< std::array<double, 3> > velocities;

std::vector< std::array<double, 3> > total_forces;

std::vector<double> masses;

std::vector<double> radii;

};

Particles particles; Now, these arrays will be
accessed sequentially!

11/15/2016 Lectures on Modern Scientific Programming 2016 80

Optimization – Memory!

Multidimensional arrays!

• Example: naive matrix multiplication (800x800)

with different index ordering all matrices stored as row-major:

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘
𝐷𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑘𝑗
𝐸𝑖𝑘 = 𝐴𝑗𝑖𝐵𝑗𝑘
𝐹𝑘𝑖 = 𝐴𝑗𝑖𝐵𝑗𝑘

11/15/2016 Lectures on Modern Scientific Programming 2016 81

Optimization – Memory!

Multidimensional arrays!

• Example: naive matrix multiplication

with different index ordering all matrices stored as row-major:

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘
𝐷𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑘𝑗
𝐸𝑖𝑘 = 𝐴𝑗𝑖𝐵𝑗𝑘
𝐹𝑘𝑖 = 𝐴𝑗𝑖𝐵𝑗𝑘

1.93 sec
1.17 sec
7.00 sec
7.04 sec

11/15/2016 Lectures on Modern Scientific Programming 2016 82

Optimization – Memory!

Multidimensional arrays!

• Example: rank 3 tensor-matrix multiplication (400x400x400)

with different index ordering still row-major:

𝐶𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑘𝑙
𝐷𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑙𝑘
𝐸𝑖𝑗𝑘 = 𝐴𝑖𝑙𝑗𝐵𝑘𝑙
𝐹𝑖𝑗𝑘 = 𝐴𝑙𝑖𝑗𝐵𝑘𝑙

11/15/2016 Lectures on Modern Scientific Programming 2016 83

Optimization – Memory!

Multidimensional arrays!

• Example: rank 3 tensor-matrix multiplication (400x400x400)

with different index ordering still row-major:

𝐶𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑘𝑙
𝐷𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑙𝑘
𝐸𝑖𝑗𝑘 = 𝐴𝑖𝑙𝑗𝐵𝑘𝑙
𝐹𝑖𝑗𝑘 = 𝐴𝑙𝑖𝑗𝐵𝑘𝑙

58 sec
50 sec
58 sec
70 sec

11/15/2016 Lectures on Modern Scientific Programming 2016 84

Optimization – Memory!

Multidimensional arrays!

• Solution: block-wise traversal!

11/15/2016 Lectures on Modern Scientific Programming 2016 85

Optimization – Memory!

Multidimensional arrays!

• Solution: block-wise traversal!

11/15/2016 Lectures on Modern Scientific Programming 2016 86

Optimization – Memory!
Naive traversal in code:

for(int i=0; i<N; ++i)
{

for(int j=0; j<N; ++j)
{

double sum = 0.0;
for(int k=0; k<N; ++k){ sum += A[i*N+k] * B[k*N+j]; }
C[i*N+j] = sum;

}
}

11/15/2016 Lectures on Modern Scientific Programming 2016 87

Optimization – Memory!
Block-wise traversal in code:

for(int bi=0; bi<Bs; ++bi){ //block index 1

for(int bj=0; bj<Bs; ++bj){ //block index 2

for(int bk=0; bk<Bs; ++bk){ //block index 3

auto i0 = bi * b; auto j0 = bj * b; auto k0 = bk * b;

for(int i=0; i<b; ++i){ auto ii = i0 + i;

for(int j=0; j<b; ++j){ auto jj = j0 + j; double sum = 0.0;

for(int k=0; k<b; ++k){ sum += A[i*N+k0+k] * B[(k0+k)*N+j]; }

C[i*N+j] += sum;

}

}

}

}

} 11/15/2016 Lectures on Modern Scientific Programming 2016 88

Optimization – Memory!
Block-wise traversal timings:
N = 1024

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘

Block size Time [seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 (equivalent to naive) 36.1
11/15/2016 Lectures on Modern Scientific Programming 2016 89

Optimization – Memory!

CAUTION: Pitfall danger!

11/15/2016 Lectures on Modern Scientific Programming 2016 90

Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• Cache is split into lines

• When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

11/15/2016 Lectures on Modern Scientific Programming 2016 91

Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• Cache is split into lines

• When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

11/15/2016 Lectures on Modern Scientific Programming 2016 92

Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• Cache is split into lines

• When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

11/15/2016 Lectures on Modern Scientific Programming 2016 93

Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• If the stride in this example is 16 (binary: 10000)

+16 (+10000b)

11/15/2016 Lectures on Modern Scientific Programming 2016 94

Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• If the stride in this example is 16 (binary: 10000)

• The new data will overwrite exactly the earlier one,
although there would be free space in the cache!

Same cache line address

11/15/2016 Lectures on Modern Scientific Programming 2016 95

Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1
11/15/2016 Lectures on Modern Scientific Programming 2016 96

Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1

N = 1023
Block size

Time
[seconds]

1 10.4

3 2.8

11 1.8

13 1.7

33 1.8

93 2.7

341 2.9

1023 6.8

11/15/2016 Lectures on Modern Scientific Programming 2016 97

Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1

N = 1023
Block size

Time
[seconds]

1 10.4

3 2.8

11 1.8

13 1.7

33 1.8

93 2.7

341 2.9

1023 6.8

N = 1025
Block size

Time
[seconds]

1 10.9

5 2.1

25 1.8

41 1.7

205 2.6

1025 8.5

11/15/2016 Lectures on Modern Scientific Programming 2016 98

Optimization – Memory!
Another example: Massive convolution

Image data:

• 512 x 512 x 32 channels

Kernel

• 128 different 3 x 3 x 32 channel kernels

The 512x512 images convolved with the 3x3 kernels and summed over the
channels, repeated for all 128 different kernels

11/15/2016 Lectures on Modern Scientific Programming 2016 99

Optimization – Memory!
Another example: Massive convolution

Kernel storage order (row major): filter -> y -> x -> channel

Image storage order (row major): y -> x -> channel

Only x direction is block grouped, because x-y could not fit in the cache at
the same time.

11/15/2016 Lectures on Modern Scientific Programming 2016 100

Optimization – Memory!
Another example: Massive convolution

Kernel storage order (row major): filter -> y -> x -> channel

Image storage order (row major): y -> x -> channel

Only x direction is block grouped, because x-y could not fit in the cache at
the same time.

Channel should be the last, the contiguous,
so the frequent summation does not suffer

11/15/2016 Lectures on Modern Scientific Programming 2016 101

Optimization – Memory!
Another example: Massive convolution

Loop order:

• Image y, image x block

• Kernel (128)

• Kernel y-x (3x3)

• Channel (32)

• Image x in block

11/15/2016 Lectures on Modern Scientific Programming 2016 102

Optimization – Memory!
Another example: Massive convolution

Loop order:

• Image y, image x block

• Memcopy to temporary image array [3 x 32 x blocksize]

• Kernel (128)

• Kernel y-x (3x3)

• Channel (32)

• Image x in block
Turns out, that the image stride is so big,
that it is much better to memcopy together
3 lines of the image
(3 lines of all 32 channels)

11/15/2016 Lectures on Modern Scientific Programming 2016 103

Optimization – Memory!

Short summary:

• Block traversal is much better than naive traversal

• Keep the strides small

• Keep the strides away from powers of two!

• Applies to:
• Linear Algebra

• Finite differences

• Image processing

11/15/2016 Lectures on Modern Scientific Programming 2016 104

Optimization – Memory!

• Still memory access and locality

• The never ending story

11/15/2016 Lectures on Modern Scientific Programming 2016 105

Optimization – Memory!

• N-body simulation.

• See last year for a discussion from the beginning

• But last year we did not go into space partitioning...

11/15/2016 Lectures on Modern Scientific Programming 2016 106

Optimization – Space partitioning

• Split the simulation area into blocks

• Each block has an array of particles
that are physically inside it

• Periodically update the blocks to
account for particles leaving /
entering

11/15/2016 Lectures on Modern Scientific Programming 2016 107

Optimization – Space partitioning

Expected improvements:

• Only calculate interaction inside
blocks

• N^2 / 2 cost reduces greatly

Expected deteriorations:

• Force calculation looses precision

11/15/2016 Lectures on Modern Scientific Programming 2016 108

Optimization – Space partitioning

But there are more improvements!

• More data locality inside the blocks
• Better cache usage

• Easier multi-threading
(less and more predictable data races to avoid)

• More efficient data reductions
(like correlation functions)

11/15/2016 Lectures on Modern Scientific Programming 2016 109

Optimization – Space partitioning

Outline of one simulation step (N_cell = 30^2, N_part = N_total / N_cell):

1. Place particles into cells (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)

2. Inter-cell pair interactions (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡
2 /2)

3. Exact interaction of nearest neighbor cells (Cost: 4𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡
2 /2)

4. Calculate center-of-mass data (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)

5. Center-of-mass interaction of cells (Cost: 𝑁𝑐𝑒𝑙𝑙
2)

6. Step particles (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)

11/15/2016 Lectures on Modern Scientific Programming 2016 110

Optimization – Space partitioning

Outline of one simulation step
(N_cell = 30^2, N_part = 25k / N_cell):

1. Place particles into cells 1 ms (2%)

2. Inter-cell pair interactions 5.5 ms (11%)

3. Exact interaction of nearest neighbor cells 33 ms (67 %)

4. Calculate center-of-mass data 1.3 ms (3%)

5. Center-of-mass interaction of cells 7.4 ms (15%)

6. Step particles 0.8 ms (1.7%)

Total: 49 ms
11/15/2016 Lectures on Modern Scientific Programming 2016 111

Summary

This talk mainly focused on memory access optimizations

These give a large percent of performance losses that can be addressed
by average amount of work and compilers wont do it automatically

Take home message:

Linear forward contiguous access

Hardware prefers spatiotemporal locality of data access

11/15/2016 Lectures on Modern Scientific Programming 2016 112

