Quisner

Optimization

Lectures on Modern Scientific Programming 2016

Optimization - What? When? How?

Optimization is tailoring some parameters to a desired value
But what?

* Paid by work hours? Optimize work to take longer...
* Paid by lines of code? Maximize line breaks in the code
* Developing for an embedded system? Minimize memory usage

* Working on a HPC simulation? Tune for time...

Quisner

Quisner
Optimization - What? When? How?

Optimization is tailoring some parameters to a desired value
But what?

* Paid by work hours? Optimize work to take longer...
* Paid by lines of code? Maximize line breaks in the code

* Developing for an embedded system? Minimize memory usage

@orking on a HPC simulation? Tune for time >

11/15/2016 Lectures on Modern Scientific Programming 2016 3

Quisner
Optimization - What? When? How?

Optimization for time... What time?

11/15/2016 Lectures on Modern Scientific Programming 2016 4

Quisner

Optimization - What? When? How?

Optimization for time... What time?

Project life time

11/15/2016 Lectures on Modern Scientific Programming 2016 5

Quisner

Optimization - What? When? How?

Optimization for time... What time?

Development time Execution time

Project life time

11/15/2016 Lectures on Modern Scientific Programming 2016 6

Quisner

Optimization - What? When? How?
Optimization for time... What time?

* How long will your program run?

Development time Execution time

Project life time

11/15/2016 Lectures on Modern Scientific Programming 2016 7

Quisner

Optimization - What? When? How?
Optimization for time... What time?

Only consider delving into optimizing program execution:

* If it is expected to run for a much-much longer time than the
development (typically weeks, months, on a cluster of hundreds of cores)

* Or when low latency is of utmost importance
(online data processing and response)

11/15/2016 Lectures on Modern Scientific Programming 2016 8

Quisner
Optimization - What? When? How?

Let’s start optimizing!

11/15/2016 Lectures on Modern Scientific Programming 2016 9

Quisner
Optimization - What? When? How?

Let’s start optimizing!
* Step 1:

11/15/2016 Lectures on Modern Scientific Programming 2016 10

Quisner
Optimization - What? When? How?

Let’s start optimizing!
e Step 1: Do not optimize!

11/15/2016 Lectures on Modern Scientific Programming 2016 11

Quisner

Optimization - What? When? How?

Let’s start optimizing!
e Step 1: Do not optimize!

Premature optimization is the root of all evil <Insertscary image here>
(worse than shared mutable state!)

11/15/2016 Lectures on Modern Scientific Programming 2016 12

Quisner
Optimization - What? When? How?

Let’s start optimizing!

e Step 1: Do not optimize!
 Verify the correctness of your code
* Check memory management
e Check APl and library usage

11/15/2016 Lectures on Modern Scientific Programming 2016 13

Quisner
Optimization - What? When? How?

Let’s start optimizing!

e Step 1: Do not optimize!
 Verify the correctness of your code
* Check memory management
e Check APl and library usage Read that goddamn manual at least ONCE

11/15/2016 Lectures on Modern Scientific Programming 2016 14

Quisner
Optimization - What? When? How?

Let’s start optimizing!

e Step 1: Do not optimize!
 Verify the correctness of your code
* Check memory management
Check APl and library usage
Verify edge cases
Check dependence on environment
Check your floating point numbers (overflow, loss of precision, INF, NAN)

Quisner
Optimization - What? When? How?

Let’s start optimizing!

* Step 1: Do not optimize!
* Verify the correctness of your code
Check memory management
Check APl and library usage
Verify edge cases
Check dependence on environment
Check your floating point numbers (overflow, loss of precision, INF, NAN)
Check your includes and definitions especially in multiple translation units
Check the versions and builds of the libraries you’re linking
Verify argument passing to different languages, interfaces...

Quisner
Optimization - What? When? How?

Let’s start optimizing!
e Step 1: Continued...

11/15/2016 Lectures on Modern Scientific Programming 2016 17

Quisner
Optimization - What? When? How?

Let’s start optimizing!

e Step 1: Continued...
 Verify your code in debug and non-debug (release) builds
* Check uninitialized variables
* Verify your code w.r.t. 32 - 64 bit width
 Verify handling of exceptional cases, null pointers

Quisner
Optimization - What? When? How?

Let’s start optimizing!

e Step 1: Continued...
 Verify your code in debug and non-debug (release) builds
* Check uninitialized variables
* Verify your code w.r.t. 32 - 64 bit width
Verify handling of exceptional cases, null pointers
Did | mention checking your memory management? Allocations? Deallocations?
Check floating point precision settings
Check your code with different compilers
Turn on more or all warnings

Quisner

Optimization - What? When? How?

Let’s start optimizing!
» Step 2: Repeat step 1 until you are sure

11/15/2016 Lectures on Modern Scientific Programming 2016 20

Quisner
Optimization - What? When? How?

Let’s start optimizing!
» Step 2: Repeat step 1 until you are sure

* Back up your working code!
* So you can compare optimized versions with the original

11/15/2016 Lectures on Modern Scientific Programming 2016 21

Quisner
Optimization - What? When? How?

Let’s start optimizing!
» Step 2: Repeat step 1 until you are sure

* Back up your working code!
* So you can compare optimized versions with the original
NO! Not speed-wise
But whether they do the same thing!

11/15/2016 Lectures on Modern Scientific Programming 2016 22

Quisner
Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code

Quisner
Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code

11/15/2016 Lectures on Modern Scientific Programming 2016 24

Quisner

Optimization - What? When? How?

The curve of optimization gains:

~

Execution time

We’ll focus on this part

Amount of work spent on code

11/15/2016 Lectures on Modern Scientific Programming 2016 25

| uisner
Time measurement

How fast is my code actually?

11/15/2016 Lectures on Modern Scientific Programming 2016 26

| (uisner
Time measurement

How fast is my code actually?

* One of the best and standard ways to measure time now is to use the
standard library!

Quisner

Time measurement

#include <chrono>
auto tmark(){

return std::chrono::high resolution clock::now();

¥

template<typename T1, typename T2>
auto delta time(T1&& t1, T2&& t2)

{
return .
std: :chrono: :duration_cast<std: :chrono: :nanoseconds>(t2-tl)

.count()/1000.0;
}

11/15/2016 Lectures on Modern Scientific Programming 2016 28

»

, uicGner
Time measurement

auto t@ = tmark();
//fancy code to be measured
auto tl = tmark();

std::cout << "My calculation took:
<< delta time(t@, t1l) << " usecs.\n";

11/15/2016 Lectures on Modern Scientific Programming 2016 29

| (uisner
Time measurement

Time measurement can be tricky...

» System calls’ delay depends on many factors (OS load)
* Time measurement itself is (light) a system call

| uisner
Time measurement

Time measurement can be tricky...

» System calls’ delay depends on many factors (OS load)
* Time measurement itself is (light) a system call

* OS multi threading may put a thread aside, but measurement may not be corrected
* OS may put a thread from one core to the other measurements go frenzy

* The hardware clock underlying the measurement may do unexpected things
especially on multicore systems

11/15/2016 Lectures on Modern Scientific Programming 2016 31

| uisner
Time measurement

The distribution of measured times can be absolutely non-trivial:

800000 T T T T T T T T T 20000 T T T T T T
700000 -] 4 180001 I]
16000 T
600000]
14000 T
500000 | 1 13000 L |
400000 | 4 10000 f | I .
300000 . 8000 - _)
6000 |] 1
200000 - ||
4000 =
2000 T
0 | | | | | | HI =l | 0 1 1 | _|—|_|— | |
-0.3 0 0.5 1 1.5 2 2.9 3 3.5 4 4.5 0 100 200 300 400 500 600 700
Trigonometric sum (50 terms) [us] Memory allocation (300 kB) [us]

11/15/2016 Lectures on Modern Scientific Programming 2016 32

| (uisner
Time measurement

* As a rule of thumb we usually measure code multiple times
(tens-hundreds) and take the minimum

* OS and scheduling noises expected to just increase the execution time

* so the minimum should be a good estimator for the time of the actual
code

Quisner
Optimization - What? When? How?

Cheapest optimizations:

11/15/2016 Lectures on Modern Scientific Programming 2016 34

Quisner
Optimization - What? When? How?

Cheapest optimizations:
Know your compiler

Remember:
* There are multiple levels of parallelism available:

 Bit-level

* |Instruction-level

* Vector-level —
e Task/Device-level

* Process/Cluster-level

— Taken care by the processor and the compiler

11/15/2016 Lectures on Modern Scientific Programming 2016 35

Quisner
Optimization - What? When? How?

Cheapest optimizations:
Know your compiler

Remember:
* There are multiple levels of parall

ism available:

 Bit-level

* |Instruction-level
* Vector-level —
e Task/Device-level

* Process/Cluster-level

— Taken care by the processor and the compiler

11/15/2016 Lectures on Modern Scientific Programming 2016 36

Quisner
Optimization - What? When? How?

Cheapest optimizations:

* Compiler optimizations! Just a flip of switch

e Enable optimizations (-O3)
* Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)

* Enable enhanced instruction set usage (SSE, AVX, ...)
* Enable / tune vectorization efficiency

Check your compiler’s manual!

Quisner

Optimization - What? When? How?

Cheapest optimizations:

* Compiler optimizations! Just a flip of switch
* Enable optimizations (-O3)
* Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)
* Enable enhanced instruction set usage (SSE, AVX, ...)
* Enable / tune vectorization efficiency

Check your compiler’s manual!

Verify program correctness! Some optimizations may alter the working
of your program, especially if your are using some hacks...

11/15/2016 Lectures on Modern Scientific Programming 2016 38

Optimization — x86 instruction timings

Shift / Rot

AND / OR / XOR
Compare/test
Call (Ret)
Integer add/sub
Integer mul

Integer div

11/15/2016

1-4
1-4
1-4
5(8)
1-8
3-18
32-103

Quisner

MMX 1-9
SSE Integer 1-9
SSE single + - logical 1-12
SSE single mul 3-7
SSE single div/sqrt 10-40
SSE2 double simple ops 1-12
SSE2 double mul 3-7
SSE2 double div/sqgrt 14-70
SSE2 128bit int 1-10
SSE3 / SSE4 1-14

AVX figures are approximately the same as SSE

Lectures on Modern Scientific Programming 2016

FADD/FSUB/FABS

FMUL 7-8
FDIV 23-44
FSQRT 23-44
FSIN, FCOS 160-280
FSINCOS 160-250
FPTAN 225-300
FPATAN 150-300
FSCALE 60
FYL2X/FYL2XP1 100-250

Only the ratios are important!

39

Optimization — high level timings @EHEF

1 clock cycle on a 3 GHz processor 1 le-6

L1 cache access 0.5 S5e-7

Branch misprediction 5 5e-6 w
L2 cache access 7 7e-6 g
Mutex lock/unlock 25 2,5e-5 8
RAM access 100 0,0001 %
1kB data compression with Snappy 3000 0,003 2_
1kB data transmission on a 1 Gbps network 10000 0,01 %
4 kB data random access read from an SSD 150000 0,15 gn-
1 MB data contiguous read from RAM 250000 0,25 s
Roundtrip in a datacenter 500000 0,5 ‘:’,_’..
1 MB data contiguous read from SSD le6 1 ol
Hard disk ,seek’ (search) time 1le7 10

1 MB data contiguous read from a hard disk 2e7 20

11152 HEP/IP packet travel time between.continents, , scicniic prols2€8:: 2016 150 40

http://en.wikipedia.org/wiki/Snappy_(software)
http://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics#SEEKTIME
https://www.youtube.com/watch?v=fHNmRkzxHWs&t=2197

Quisner
Optimization - Timings

Why is it good to roughly know the timings?

* One can approximately design the program:

* Where different data should be located
(most accessed in cache and memory, big or/but rarely needed on disk)

 What expressions should be preferred in formulas

Quisner
Optimization - Timings

What expressions should be preferred in formulas?
We often see people copy-pasting formulas from Mathematica

The problem is that many formulas can be very much simplified by
introducing new temporary sub expressions

The compiler is not expected to know all math identities and cannot
optimize your formulas as well as you could...

Quisner
Optimization - Timings

Formula:

Zn: sin (N

J=1

)) Z": o (Nﬂ_llc_jl) 1— cos(nk)

k=1

G

Quisner
Optimization - Timings

Formula:

. (ﬂj) (ﬂj
sin{ v 7) 7\ oS\ 1

n

) Z": [wkj \ 1 — cos(mk)
. N1 k

=1

]j=1

Same factor is used multiple times, lets factor out!

11/15/2016 Lectures on Modern Scientific Programming 2016 44

Quisner
Optimization - Timings

Formula:

Tj
Let qj = Nl

n n
1 — cos(mk)

2 sin(qj) f (cos(qj)) z sin(kqj) P

j=1 k=1

Optimization - Timings

Formula: Think more... cos is expensive, and here it is only
evaluated at integer multiplies of T

mj

Letq]- = i1 1 —cos(mk) = (k%2==1 ? 2.0/k : 0.0)
n n \
1 — cos(mtk)

2 sin(qj) f (cos(qj)) z sin(kqj) P

j=1 k=1

Quisner

Quisner
Optimization - Timings

More complex formulas may be less trivial to refactor and optimize, but
you compiler will thank you!

Do not worry about temporaries, the compiler will remove them

Do worry about complex special function expressions and use identities
to simplify them

Quisner
Optimization — Memory!

Beginner-Intermediate optimization:

Memory

11/15/2016 Lectures on Modern Scientific Programming 2016 48

Quisner
Optimization — Memory!

Beginner-Intermediate optimization:
In fact, 80% of optimizations
are dealing with data access and data organization in memory

Quisner
Optimization — Memory!

Beginner-Intermediate optimization:
In fact, 80% of optimizations
are dealing with data access and data organization in memory

Accordingly:
80% of performance issues we meet are related to memory
management and data access problems

Quisner
Optimization — Memory!

Question:

 Which one takes longer:
* heap memory allocation or
e zeroing out the allocated memory?

»

yicner
Optimization — Memory!

Time [us]

Answer: Allocate m—— I ! ' ' S ' ' 1 : ' —

10000 |

1000 |

100

10 |

1 R | , , L , , L1 , A | . A | -
1000 10000 100000 1x10°8 1x107

11/15/2016 Lectures on Modern Scientific F#og}grdﬂh)gblﬁs 52

Quisner
Optimization — Memory!

Conclusion: dynamic heap memory allocation is slow...

Solution: avoid dynamic heap memory allocation©

uisner
Optimization — Memory!
Especially avoid:

for(int i=0; i<N; ++1i)

{

}

11/15/2016 Lectures on Modern Scientific Programming 2016 54

Quisner
Optimization — Memory!

Especially avoid:
for(int 1=0; i<N; ++1i)

{
for(int j=0; Jj<N; ++7j)

{

}

11/15/2016 Lectures on Modern Scientific Programming 2016 55

Optimization — Memory!

Especially avoid:
for(int i=0; i<N; ++1)

{

for(int j=0; Jj<N; ++7j)

{
for(int k=0; k<N; ++k)
{

std: :vector<double> vec(..

}

}

¥

11/15/2016 Lectures on Modern Scientific Programming 2016

)5

Quisner

56

Optimization — Memory!

Especially avoid:
for(int i=0; i<N; ++1)

{

for(int j=0; Jj<N; ++7j)

{
for(int k=0; k<N; ++k)
{

std::vector<double> vec(..

}

}

11/15/2016 Lectures on Modern Scientific Programming 2016

Quisner

You've just payed
NA3 times the
allocation cost

)5

57

Quisner
Optimization — Memory!

std::vector<double> vec(...);

for(int i=0; i<N; ++1)
{ If possible, move the

for(int j=0; j<N; ++3j) allocation out of the loop!
{

for(int k=0; k<N; ++k)

{

}

11/15/2016 Lectures on Modern Scientific Programming 2016 58

Optimization — Memory!

C++ standard library containers that by default use
dynamical heap allocations:

e std::vector, std::1list, std::set,

Containers that do not use dynamical heap allocations:

e std::array<T, n>

11/15/2016 Lectures on Modern Scientific Programming 2016

Quisner

59

Quisner
Optimization — Memory!

If you need to use dynamical heap allocation
* Try to allocate at the beginning of complex calculations

* If you do not know exactly how much memory you’ll need,
try to reasonably well estimate it!

Quisner
Optimization — Memory!

Widely used resizable containers:
std::vector, std::list

Let’s compare them!

11/15/2016 Lectures on Modern Scientific Programming 2016 61

»

yisner
Optimization — Memory!

Widely used resizable containers:
std::vector, std::list

#idouble |std::vector |std::list
Let’s compare them! [ms] [ms]

10k 0.3 1.1
Sequential push_back: 1M 32 90
10M 300 920

100M 2700 9300

11/15/2016 Lectures on Modern Scientific Programming 2016 62

Quisner

Optimization — Memory!

Widely used resizable containers:
std::vector, std::list

#tdouble |std::vector [std::1ist |One time
Let’s compare them! [ms] [ms] alloc [ms]

0.05
Sequential push_back: 1M 32 90 5
10M 300 920 50

100M 2700 9300 500

11/15/2016 Lectures on Modern Scientific Programming 2016 63

Quisner
Optimization — Memory!

Widely used resizable containers:
std::vector, std::list

When comparing other studies (link, link), we can conclude:

The only case, when std: : 1ist is faster, when large amount of data
need to be inserted or removed from the beginning or middle of the
dataset.

11/15/2016 Lectures on Modern Scientific Programming 2016 64

http://baptiste-wicht.com/posts/2012/11/cpp-benchmark-vector-vs-list.html
https://dzone.com/articles/c-benchmark-–-stdvector-vs

Quisner
Optimization — Memory!

If you’re absolutely limited by allocation speed, you choices:

* Analyze the distribution of your allocations

* Write a memory manager yourself, that is tailored for those statistics

* And overload new/delete to use your memory manager and not malloc

Or:
e Use a pre written memory manager (tcmalloc, jemalloc)

* There exist tools, that intercept c library calls and are much better than
malloc for frequent small allocations...

https://github.com/gperftools/gperftools
http://jemalloc.net/

Quisner
Optimization — Memory!

Data access!

11/15/2016 Lectures on Modern Scientific Programming 2016 66

Quisner
Optimization — Memory!

Data access!

Sequential access vs gapped access (we access only every Nth element)!

Quisner

Optimization — Memory!

Time [ms]

250 T T T T T T T T ‘Iu'n.l'rite o
Data access! ees L T

200 _
Sequential
access vs gapped [1
access

100 T
(we accessonly | |
every Nth ' —~——
element)! * ¥

’ 0 10 20 30 40 a0 ol 70 a0 QIEI l;ZIEI

N (step size)
11/15/2016 Lectures on Modern Scientific Programming 2016 68

Quisner

Optimization — Memory!

Time [ms]
2350 T T T T T T T T

‘Iu'ufrite e
Data access! Rond ——

Expected work =

200

What is going on’?

150 -
We are doing " |
much less work!
50) .
— _
0 | | | | | - s T
0 10 20 30 40 50 a0 70 a0 an 100

N (step size)
11/15/2016 Lectures on Modern Scientific Programming 2016 69

Quisner

Optimization — Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

The element
you accessed

E\EI:EEEEEEEED:EEEI

Memory offset

11/15/2016 Lectures on Modern Scientific Programming 2016 70

Quisner

Optimization — Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

The element

you accessed
\ The data actually transferred from memory to cache (prefetch)

A

\

(LI TTTTTTTTTITTIT]

Memory offset

11/15/2016 Lectures on Modern Scientific Programming 2016 71

Quisner

Optimization — Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

If you access all elements received,
The element most likely they will be in the cache
you accessed

h : \

Memory offset

11/15/2016 Lectures on Modern Scientific Programming 2016 72

Quisner

Optimization — Memory!

The memory controller and the cache is working in such a way, that the
fastest operation is sequential forward access:

If you make a long jump for the next element,
The element everything is need to be read again...
you accessed

Memory offset

11/15/2016 Lectures on Modern Scientific Programming 2016 73

Quisner
Optimization — Memory!

Typical cases of interleaved memory usage:

* Accessing only some members of structs in an array

Quisner
Optimization — Memory!

Typical cases of interleaved memory usage:

* Accessing only some members of structs in an array
* Multi dimensional arrays

Quisner
Optimization — Memory!

Typical cases of interleaved memory usage:

* Accessing only some members of structs in an array
* Multi dimensional arrays

* The combination of the above

Optimization — Memory!
Accessing only some members of a struct:

struct Particle

{
std: :array<double, 3> position;
std: :array<double, 3> velocity;
std::array<double, 3> total force;
double mass, radius;

}s

std: :vector<Particle> particles;

11/15/2016 Lectures on Modern Scientific Programming 2016

»

uiGner

77

Quisner

Optimization — Memory!

struct Particle

Accessing only some members of a (
struct: std::array<double, 3> position;
std: :array<double, 3> velocity;
std::array<double, 3> total force;
. . double mass, radius;
Consider a force calculation... }s

. . std::vector<Particle> particles;
Usually only position and mass is

needed for that... This means:
You only access these!

§ ™~

[Pos (24 bytes) | Vel (24 bytes) F (24 bytes) |m)| r(sb) | Pos (24 bytes) | Vel (24 bytes)

\ J \\
11/15/2016 h 4 Lectures on Modern Scientific Programming 2016 78 Y

Optimization — Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{
std:
std:
std:
std:
std:
}s

:vector< std::array<double, 3> > positions;
:vector< std::array<double, 3> > velocities;
:vector< std::array<double, 3> > total forces;
:vector<double> masses;

:vector<double> radii;

Particles particles;

11/15/2016

Lectures on Modern Scientific Programming 2016

»

uiGner

79

»

uiGner

Optimization — Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{
std::vector< std::array<double, 3> > positions;
std::vector< std::array<double, 3> > Vyelocities;
std::vector< std::array<double, tal forces;
std: :vector<double> masses;
std::vector<double> radii;

¥

Particles particles; Now, these arrays will be

11/15/2016

accessed sequentially!

Lectures on Modern Scientific Programming 2016 80

Quisner
Optimization — Memory!

Multidimensional arrays!
 Example: naive matrix multiplication (800x800)
with different index ordering all matrices stored as row-major:

Cik = A;jBjy
Diy = A;jBy;
Eix = AjiBjx
Fri = AjiBjy

11/15/2016 Lectures on Modern Scientific Programming 2016 81

Optimization — Memory!

Multidimensional arrays!

* Example:

11/15/2016

naive matrix multiplication

Quisner

with different index ordering all matrices stored as row-major:

Cik = A;jBji
Diy = A;jBy;
Eix = A;iBjy

Fri = A;iBji

Lectures on Modern Scientific Programming 2016

1.93 sec
1.17 sec
7.00 sec
7.04 sec

82

Quisner
Optimization — Memory!

Multidimensional arrays!
 Example: rank 3 tensor-matrix multiplication (400x400x400)

with different index ordering still row-major:

Cijx = AijiBri
Dijx = A1 B
Eijkx = Ai1jBri
Fijx = A1ijBr

11/15/2016 Lectures on Modern Scientific Programming 2016 83

Optimization — Memory!

Multidimensional arrays!

* Example:

11/15/2016

rank 3 tensor-matrix multiplication (400x400x400)
with different index ordering still row-major:

Le

Cijx = AijiBri
Dijx = A1 B
Eijr = AyjBr
Fijk = Ay3jBy

ctures on Modern Scientific Programming 2016

58 sec
50 sec
58 sec
70 sec

Quisner

84

Quisner
Optimization — Memory!

Multidimensional arrays!
e Solution: block-wise traversal!

11/15/2016 Lectures on Modern Scientific Programming 2016 85

»

yisner
Optimization — Memory!

Multidimensional arrays!
* Solution: block-wise traversal!

h—h—
h—h—

q
q

|
Pleldld

1 |

11/15/2016 Lectures on Modern Scientific Programming 2016 86

Quisner
Optimization — Memory!

Naive traversal in code:

for(int 1=0; i<N; ++i)
{
for(int j=0; j<N; ++7j)
{
double sum = 0.0;
for(int k=0; k<N; ++k){ sum += A[i*N+k] * B[k*N+j]; }
C[i*N+j] = sum;

Quisner
Optimization — Memory!

Block-wise traversal in code:
for(int bi=0; bi<Bs; ++bi){ //block index 1
for(int bj=0; bj<Bs; ++bj){ //block index 2
for(int bk=0; bk<Bs; ++bk){ //block index 3

auto i® = bi * b; auto jOo = bj * b; auto k@ = bk * b;

for(int i=0; i<b; ++i){ auto ii = i@ + i;
for(int j=0; j<b; ++j){ auto jj = jO + j; double sum = 0.0;
for(int k=0; k<b; ++k){ sum += A[i*N+kO+k] * B[(kO+k)*N+j]; }
C[i*N+j] += sum;

¥

} 11/15/2016 Lectures on Modern Scientific Programming 2016 88

Quisner
Optimization — Memory!

Time [seconds]
1 74

Block-wise traversal timings:
N =1024

2 17.1
Cik = AijBji 4 >-8
8 2.7
16 2.9
32 2.7
64 2.48
128 2.6
256 2.6
512 15.5

1024 (equivalent to naive) 36.1

11/15/2016 Lectures on Modern Scientific Programming 2016 89

Quisner
Optimization — Memory!

CAUTION: Pitfall danger!

Quisner
Optimization — Memory!

Large powers of two strides can kill the cache mechanism!
Why?

* Cache is split into lines

* When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

Quisner
Optimization — Memory!

Large powers of two strides can kill the cache mechanism!
Why?

* Cache is split into lines

* When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

»

o wisner
Optimization — Memory!

Large powers of two strides can kill the cache mechanism!
Why?

* Cache is split into lines

* When data is being stored into the cache the destination line is selected
by looking at the last few bits of the address

mmmmm\mmm

11/15/2016 Lectures on Modern Scientific Programming 2016 93

»

o wisner
Optimization — Memory!

Large powers of two strides can kill the cache mechanism!
Why?

* If the stride in this example is 16 (binary: 10000)

I@@IE@I@III@I@@@]

+16 (+10000b)

1/0JOJ1J1jOJ1]Of1f1]1}1)j1]0]0OJ0

11/15/2006 ~ lLectureson Mo dern Scientific Programming 2016

»

o wisner
Optimization — Memory!

Large powers of two strides can kill the cache mechanism!
Why?

* If the stride in this example is 16 (binary: 10000)

* The new data will overwrite exactly the earlier one,
although there would be free space in the cache!

Same cache line address

[ﬂﬁ]ﬁ]ﬁ]\[ﬂ@][ﬂ

11/15/2016 Lectures on Modern Scientific Programming 2016 95

Optimization — Memory!

Same matrix multiplication again:

N =1024 Time
Block size [seconds]

1

2

4

8
16
32
64
128
256

512
1624

74
17.1
5.8
2.7
2.9
2.7
2.48
2.6
2.6
15.5
36.1

Lectures on Modern Scientific Programming 2016

»

uiGner

96

Optimization — Memory!

Same matrix multiplication again:

N =1024 Time
Block size [seconds]

1

2

4

8
16
32
64
128
256

512
1624

74
17.1
5.8
2.7
2.9
2.7
2.48
2.6
2.6
15.5
36.1

Block size
1

3

11

13

33

93

341
1023

Lectures on Modern Scientific Programming 2016

Time
[seconds]

10.4
2.8
1.8
1.7
1.8
2.7
2.9
6.8

»

uiGner

97

Quisner

Optimization — Memory!

Same matrix multiplication again:

N =1024 Time N=1023 Time N =1025 Time
Block size L Block size [seconds] Block size [seconds]

1 74 10.4 10.9
2 17.1 3 2.8 5 2.1
4 5.8 11 1.8 25 1.8
8 2.7 13 1.7 41 1.7
16 2.9 33 1.8 205 2.6
32 2.7 93 2.7 1025 8.5
64 2.48 341 2.9

128 2.6 1023 6.8

256 2.6

512 15.5

1/153/2016 Lectures on Modern Scientific Programming 2016 98
1024 36.1

Quisner
Optimization — Memory!

Another example: Massive convolution

Image data:

* 512 x 512 x 32 channels

Kernel

e 128 different 3 x 3 x 32 channel kernels

The 512x512 images convolved with the 3x3 kernels and summed over the
channels, repeated for all 128 different kernels

Quisner
Optimization — Memory!

Another example: Massive convolution

Kernel storage order (row major): filter ->y -> x -> channel
Image storage order (row major): y -> x -> channel

Only x direction is block grouped, because x-y could not fit in the cache at
the same time.

Quisner
Optimization — Memory!

Another example: Massive convolution

Kernel storage order (row major): filter ->y -> x -> channel
Image storage order (row major): y -> x -> channel

Channel should be the last, the contiguous,
so the frequent summation does not suffer

Only x direction is block grouped, because x-y could not fit in the cache at
the same time.

Quisner
Optimization — Memory!

Another example: Massive convolution

Loop order:
* Image y, image x block

e Kernel (128)
e Kernel y-x (3x3)
* Channel (32)
* Image x in block

Quisner
Optimization — Memory!

Another example: Massive convolution

Loop order:

* Imagey, image x block
* Memcopy to temporary image array [3 x 32 x blocksize]

e Kernel (128)
e Kernel y-x (3x3)

* Channel (32) Turns out, that the image stride is so big,
* Image x in block that it is much better to memcopy together
3 lines of the image
(3 lines of all 32 channels)

11/15/2016 Lectures on Modern Scientific Programming 2016 103

Quisner
Optimization — Memory!

Short summary:

* Block traversal is much better than naive traversal
* Keep the strides small

* Keep the strides away from powers of two!

* Applies to:
* Linear Algebra
* Finite differences
* Image processing

o Quisner
Optimization — Memory!

* Still memory access and locality

* The never ending story©

11/15/2016 Lectures on Modern Scientific Programming 2016 105

S Quisner
Optimization — Memory!

* N-body simulation.
* See last year for a discussion from the beginning

* But last year we did not go into space partitioning...

o . wisner
Optimization — Space partitioning

* Split the simulation area into blocks

* Each block has an array of particles
that are physically inside it

* Periodically update the blocks to Qe °
account for particles leaving /
entering o o

o . wisner
Optimization — Space partitioning

Expected improvements:

* Only calculate interaction inside
blocks : ¢

 N*2 / 2 cost reduces greatly

Expected deteriorations: c®
* Force calculation looses precision

o . wisner
Optimization — Space partitioning

But there are more improvements!

* More data locality inside the blocks
* Better cache usage

* Easier multi-threading oo o
(less and more predictable data races to avoid)

* More efficient data reductions o
(like correlation functions)

o . wisner
Optimization — Space partitioning

Outline of one simulation step (N_cell =302, N_part = N_total / N_cell):
Place particles into cells (Cost: Ni;i Npgrt)

Inter-cell pair interactions (Cost: NcellNgart/Z)

Exact interaction of nearest neighbor cells (Cost: 4NceuN§a,,t/2)
Calculate center-of-mass data (Cost: Ny Npygrt)

Center-of-mass interaction of cells (Cost: chell)

o kA wih e

Step particles (Cost: Ny Npgrt)

o . wisner
Optimization — Space partitioning

Outline of one simulation step
(N_cell =3072, N_part = 25k / N_cell):

1. Place particles into cells 1 ms (2%)

2. Inter-cell pair interactions 5.5 ms (11%)
3. Exact interaction of nearest neighbor cells 33 ms (67 %)
4. Calculate center-of-mass data 1.3 ms (3%)
5. Center-of-mass interaction of cells 7.4 ms (15%)
6. Step particles 0.8 ms (1.7%)

Total: 49 ms

(uisner
summary

This talk mainly focused on memory access optimizations

These give a large percent of performance losses that can be addressed
by average amount of work and compilers wont do it automatically

Take home message:
Linear forward contiguous access
Hardware prefers spatiotemporal locality of data access

