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Optimization - What? When? How?

Optimization is tailoring some parameters to a desired value
But what?

• Paid by work hours? Optimize work to take longer...

• Paid by lines of code? Maximize line breaks in the code

• Developing for an embedded system? Minimize memory usage

• Working on a HPC simulation? Tune for time...
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Optimization - What? When? How?

Optimization for time... What time?
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Optimization - What? When? How?

Optimization for time... What time?

Project life time
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Optimization for time... What time?

Project life time

Development time Execution time
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Optimization - What? When? How?

Optimization for time... What time?

• How long will your program run? 

Project life time

Development time Execution time
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Optimization - What? When? How?

Optimization for time... What time?

Only consider delving into optimizing program execution:

• If it is expected to run for a much-much longer time than the 
development (typically weeks, months, on a cluster of hundreds of cores)

• Or when low latency is of utmost importance

(online data processing and response)
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Optimization - What? When? How?

Let’s start optimizing!
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1:
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!

Premature optimization is the root of all evil

(worse than shared mutable state!)

<Insert scary image here>
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage Read that goddamn manual at least ONCE
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code

• Check memory management

• Check API and library usage

• Verify edge cases

• Check dependence on environment

• Check your floating point numbers (overflow, loss of precision, INF, NAN)
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Do not optimize!
• Verify the correctness of your code
• Check memory management
• Check API and library usage
• Verify edge cases
• Check dependence on environment
• Check your floating point numbers (overflow, loss of precision, INF, NAN)
• Check your includes and definitions especially in multiple translation units
• Check the versions and builds of the libraries you’re linking
• Verify argument passing to different languages, interfaces...
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...
• Verify your code in debug and non-debug (release) builds

• Check uninitialized variables

• Verify your code w.r.t. 32 - 64 bit width

• Verify handling of exceptional cases, null pointers
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Optimization - What? When? How?

Let’s start optimizing!

• Step 1: Continued...
• Verify your code in debug and non-debug (release) builds

• Check uninitialized variables

• Verify your code w.r.t. 32 - 64 bit width

• Verify handling of exceptional cases, null pointers

• Did I mention checking your memory management? Allocations? Deallocations?

• Check floating point precision settings

• Check your code with different compilers

• Turn on more or all warnings
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Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure
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Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure

• Back up your working code!
• So you can compare optimized versions with the original
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Optimization - What? When? How?

Let’s start optimizing!

• Step 2: Repeat step 1 until you are sure

• Back up your working code!
• So you can compare optimized versions with the original

NO! Not speed-wise

But whether they do the same thing!
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Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code
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Optimization - What? When? How?

The curve of optimization gains:

Execution time

Amount of work spent on code

We’ll focus on this part
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Time measurement

How fast is my code actually?
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Time measurement

How fast is my code actually?

• One of the best and standard ways to measure time now is to use the 
standard library!
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Time measurement

#include <chrono>
auto tmark(){

return std::chrono::high_resolution_clock::now();
}

template<typename T1, typename T2>
auto delta_time( T1&& t1, T2&& t2 )
{

return
std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1)

.count()/1000.0;
}
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Time measurement

auto t0 = tmark();

//fancy code to be measured

auto t1 = tmark();

std::cout << "My calculation took: "

<< delta_time(t0, t1) << " usecs.\n";
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Time measurement

Time measurement can be tricky...

• System calls’ delay depends on many factors (OS load)

• Time measurement itself is (light) a system call
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Time measurement

Time measurement can be tricky...

• System calls’ delay depends on many factors (OS load)

• Time measurement itself is (light) a system call

• OS multi threading may put a thread aside, but measurement may not be corrected

• OS may put a thread from one core to the other measurements go frenzy

• The hardware clock underlying the measurement may do unexpected things
especially on multicore systems
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Time measurement

The distribution of measured times can be absolutely non-trivial:

Memory allocation (300 kB) [µs]Trigonometric sum (50 terms) [µs]
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Time measurement

• As a rule of thumb we usually measure code multiple times
(tens-hundreds) and take the minimum

• OS and scheduling noises expected to just increase the execution time 

• so the minimum should be a good estimator for the time of the actual 
code
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Optimization - What? When? How?

Cheapest optimizations:
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Optimization - What? When? How?

Cheapest optimizations:

Know your compiler

Remember:

• There are multiple levels of parallelism available:

• Bit-level
• Instruction-level
• Vector-level
• Task/Device-level
• Process/Cluster-level

Taken care by the processor and the compiler
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Optimization - What? When? How?

Cheapest optimizations:

• Compiler optimizations! Just a flip of switch
• Enable optimizations (-O3)

• Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)

• Enable enhanced instruction set usage (SSE, AVX, ...)

• Enable / tune vectorization efficiency

Check your compiler’s manual!
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Optimization - What? When? How?

Cheapest optimizations:

• Compiler optimizations! Just a flip of switch
• Enable optimizations (-O3)
• Enable fast floating point (you guarantee that no NaNs Infs occur, -fast-math)
• Enable enhanced instruction set usage (SSE, AVX, ...)
• Enable / tune vectorization efficiency

Check your compiler’s manual!

Verify program correctness! Some optimizations may alter the working 
of your program, especially if your are using some hacks...
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Optimization – x86 instruction timings

•
I

Operation Latency

Shift / Rot 1-4

AND / OR / XOR 1-4

Compare/test 1-4

Call (Ret) 5 (8)

Integer add/sub 1-8

Integer mul 3-18

Integer div 32-103

Operation Latency

FADD/FSUB/FABS 2-6

FMUL 7-8

FDIV 23-44

FSQRT 23-44

FSIN, FCOS 160-280

FSINCOS 160-250

FPTAN 225-300

FPATAN 150-300

FSCALE 60

FYL2X/FYL2XP1 100-250

Only the ratios are important!

Operation Latency

MMX 1-9

SSE Integer 1-9

SSE single + - logical 1-12

SSE single mul 3-7

SSE single div/sqrt 10-40

SSE2 double simple ops 1-12

SSE2 double mul 3-7

SSE2 double div/sqrt 14-70

SSE2 128bit int 1-10

SSE3 / SSE4 1-14

AVX figures are approximately the same as SSE
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Optimization – high level timings
Operation Time [ns] Time [ms]

1 clock cycle on a 3 GHz processor 1 1e-6

L1 cache access 0.5 5e-7

Branch misprediction 5 5e-6

L2 cache access 7 7e-6

Mutex lock/unlock 25 2,5e-5

RAM access 100 0,0001

1kB data compression with Snappy 3000 0,003

1kB data transmission on a 1 Gbps network 10000 0,01

4 kB data random access read from an SSD 150000 0,15

1 MB data contiguous read from RAM 250000 0,25

Roundtrip in a datacenter 500000 0,5

1 MB data contiguous read from SSD 1e6 1

Hard disk ‚seek’ (search) time 1e7 10

1 MB data contiguous read from a hard disk 2e7 20

TCP/IP packet travel time between continents 1,5e8 150
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Optimization - Timings

Why is it good to roughly know the timings?

• One can approximately design the program:
• Where different data should be located

(most accessed in cache and memory, big or/but rarely needed on disk)

• What expressions should be preferred in formulas
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Optimization - Timings

What expressions should be preferred in formulas?

We often see people copy-pasting formulas from Mathematica

The problem is that many formulas can be very much simplified by 
introducing new temporary sub expressions

The compiler is not expected to know all math identities and cannot 
optimize your formulas as well as you could...

11/15/2016 Lectures on Modern Scientific Programming 2016 42



Optimization - Timings

Formula:

෍

𝑗=1

𝑛

sin
𝜋𝑗

𝑁 + 1
𝑓 cos

𝜋𝑗

𝑁 + 1
෍

𝑘=1

𝑛

sin
𝜋𝑘𝑗

𝑁 + 1

1 − cos(𝜋k)

𝑘
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Optimization - Timings

Formula:

෍

𝑗=1

𝑛

sin
𝜋𝑗

𝑁 + 1
𝑓 cos

𝜋𝑗

𝑁 + 1
෍

𝑘=1

𝑛

sin
𝜋𝑘𝑗

𝑁 + 1

1 − cos(𝜋k)

𝑘

Same factor is used multiple times, lets factor out!
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Optimization - Timings

Formula:

Let qj =
𝜋𝑗

𝑁+1

෍

𝑗=1

𝑛

sin 𝑞𝑗 𝑓 cos 𝑞𝑗 ෍

𝑘=1

𝑛

sin 𝑘𝑞𝑗
1 − cos(𝜋k)

𝑘
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Optimization - Timings

Formula:

Let qj =
𝜋𝑗

𝑁+1

෍

𝑗=1

𝑛

sin 𝑞𝑗 𝑓 cos 𝑞𝑗 ෍

𝑘=1

𝑛

sin 𝑘𝑞𝑗
1 − cos(𝜋k)

𝑘

Think more... cos is expensive, and here it is only 
evaluated at integer multiplies of 𝜋

1 − cos(𝜋k) = (k%2==1 ? 2.0/k : 0.0)
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Optimization - Timings

More complex formulas may be less trivial to refactor and optimize, but 
you compiler will thank you!

Do not worry about temporaries, the compiler will remove them

Do worry about complex special function expressions and use identities 
to simplify them
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Optimization – Memory!

Beginner-Intermediate optimization:

Memory
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Optimization – Memory!

Beginner-Intermediate optimization:

In fact, 80% of optimizations

are dealing with data access and data organization in memory
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Optimization – Memory!

Beginner-Intermediate optimization:

In fact, 80% of optimizations

are dealing with data access and data organization in memory

Accordingly:

80% of performance issues we meet are related to memory

management and data access problems
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Optimization – Memory!

Question:

• Which one takes longer:
• heap memory allocation or

• zeroing out the allocated memory?
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Optimization – Memory!

Answer:

# of doubles

Time [µs]
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Optimization – Memory!

Conclusion: dynamic heap memory allocation is slow...

Solution: avoid dynamic heap memory allocation
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Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

}
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Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

}

}
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Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

std::vector<double> vec(...);

}

}

}
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Optimization – Memory!

Especially avoid:

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

std::vector<double> vec(...);

}

}

}

You’ve just payed 
N^3 times the 
allocation cost
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Optimization – Memory!

std::vector<double> vec(...);

for(int i=0; i<N; ++i)

{

for(int j=0; j<N; ++j)

{

for(int k=0; k<N; ++k)

{

}

}

}

If possible, move the 
allocation out of the loop!
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Optimization – Memory!

C++ standard library containers that by default use
dynamical heap allocations:

• std::vector, std::list, std::set, ...

Containers that do not use dynamical heap allocations:

• std::array<T, n>

11/15/2016 Lectures on Modern Scientific Programming 2016 59



Optimization – Memory!

If you need to use dynamical heap allocation

• Try to allocate at the beginning of complex calculations

• If you do not know exactly how much memory you’ll need,
try to reasonably well estimate it!
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Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!
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Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!

Sequential push_back:

#double std::vector
[ms]

std::list
[ms]

10k 0.3 1.1

1M 32 90

10M 300 920

100M 2700 9300

11/15/2016 Lectures on Modern Scientific Programming 2016 62



Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

Let’s compare them!

Sequential push_back:

#double std::vector
[ms]

std::list
[ms]

One time 
alloc [ms]

10k 0.3 1.1 0.05

1M 32 90 5

10M 300 920 50

100M 2700 9300 500

11/15/2016 Lectures on Modern Scientific Programming 2016 63



Optimization – Memory!

Widely used resizable containers:

std::vector, std::list

When comparing other studies (link, link), we can conclude:

The only case, when std::list is faster, when large amount of data 
need to be inserted or removed from the beginning or middle of the 
dataset.
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Optimization – Memory!

If you’re absolutely limited by allocation speed, you choices:

• Analyze the distribution of your allocations

• Write a memory manager yourself, that is tailored for those statistics

• And overload new/delete to use your memory manager and not malloc

Or:

• Use a pre written memory manager (tcmalloc, jemalloc)

• There exist tools, that intercept c library calls and are much better than 
malloc for frequent small allocations...
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Optimization – Memory!

Data access!
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Optimization – Memory!

Data access!

Sequential access vs gapped access (we access only every Nth element)!
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Optimization – Memory!

Data access!

Sequential 
access vs gapped 
access

(we access only 
every Nth 
element)!

N (step size)

Time [ms]
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Optimization – Memory!

Data access!

What is going on?

We are doing 
much less work!

N (step size)

Time [ms]
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Optimization – Memory!

The memory controller and the cache is working in such a way, that the 
fastest operation is sequential forward access:

Memory offset

The element 
you accessed
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Optimization – Memory!

The memory controller and the cache is working in such a way, that the 
fastest operation is sequential forward access:

Memory offset

The element 
you accessed

The data actually transferred from memory to cache (prefetch)
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Optimization – Memory!

The memory controller and the cache is working in such a way, that the 
fastest operation is sequential forward access:

Memory offset

The element 
you accessed

If you access all elements received, 
most likely they will be in the cache
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Optimization – Memory!

The memory controller and the cache is working in such a way, that the 
fastest operation is sequential forward access:

Memory offset

The element 
you accessed

If you make a long jump for the next element, 
everything is need to be read again...
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Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array
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Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array

• Multi dimensional arrays
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Optimization – Memory!

Typical cases of interleaved memory usage:

• Accessing only some members of structs in an array

• Multi dimensional arrays

• The combination of the above
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Optimization – Memory!

Accessing only some members of a struct:

struct Particle
{

std::array<double, 3> position;
std::array<double, 3> velocity;
std::array<double, 3> total_force;
double mass, radius;

};
std::vector<Particle> particles;
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Optimization – Memory!

Accessing only some members of a 
struct:

Consider a force calculation...

Usually only position and mass is 
needed for that... This means:

struct Particle
{

std::array<double, 3> position;
std::array<double, 3> velocity;
std::array<double, 3> total_force;
double mass, radius;

};
std::vector<Particle> particles;

Pos (24 bytes) Vel (24 bytes) F (24 bytes) m (8b) r (8b) Pos (24 bytes) Vel (24 bytes) F (24 bytes)

You only access these!
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Optimization – Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{

std::vector< std::array<double, 3> > positions;

std::vector< std::array<double, 3> > velocities;

std::vector< std::array<double, 3> > total_forces;

std::vector<double> masses;

std::vector<double> radii;

};

Particles particles;
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Optimization – Memory!

The standard solution for this is the Structures-of-Arrays arrangement:

struct Particles

{

std::vector< std::array<double, 3> > positions;

std::vector< std::array<double, 3> > velocities;

std::vector< std::array<double, 3> > total_forces;

std::vector<double> masses;

std::vector<double> radii;

};

Particles particles; Now, these arrays will be 
accessed sequentially!
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Optimization – Memory!

Multidimensional arrays!

• Example: naive matrix multiplication (800x800)

with different index ordering all matrices stored as row-major:

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘
𝐷𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑘𝑗
𝐸𝑖𝑘 = 𝐴𝑗𝑖𝐵𝑗𝑘
𝐹𝑘𝑖 = 𝐴𝑗𝑖𝐵𝑗𝑘
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Optimization – Memory!

Multidimensional arrays!

• Example: naive matrix multiplication

with different index ordering all matrices stored as row-major:

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘
𝐷𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑘𝑗
𝐸𝑖𝑘 = 𝐴𝑗𝑖𝐵𝑗𝑘
𝐹𝑘𝑖 = 𝐴𝑗𝑖𝐵𝑗𝑘

1.93 sec
1.17 sec
7.00 sec
7.04 sec
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Optimization – Memory!

Multidimensional arrays!

• Example: rank 3 tensor-matrix multiplication (400x400x400)

with different index ordering still row-major:

𝐶𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑘𝑙
𝐷𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑙𝑘
𝐸𝑖𝑗𝑘 = 𝐴𝑖𝑙𝑗𝐵𝑘𝑙
𝐹𝑖𝑗𝑘 = 𝐴𝑙𝑖𝑗𝐵𝑘𝑙
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Optimization – Memory!

Multidimensional arrays!

• Example: rank 3 tensor-matrix multiplication (400x400x400)

with different index ordering still row-major:

𝐶𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑘𝑙
𝐷𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑙𝐵𝑙𝑘
𝐸𝑖𝑗𝑘 = 𝐴𝑖𝑙𝑗𝐵𝑘𝑙
𝐹𝑖𝑗𝑘 = 𝐴𝑙𝑖𝑗𝐵𝑘𝑙

58 sec
50 sec
58 sec
70 sec
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Optimization – Memory!

Multidimensional arrays!

• Solution: block-wise traversal!
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Optimization – Memory!

Multidimensional arrays!

• Solution: block-wise traversal!
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Optimization – Memory!
Naive traversal in code:

for(int i=0; i<N; ++i)
{

for(int j=0; j<N; ++j)
{

double sum = 0.0;
for(int k=0; k<N; ++k){ sum += A[i*N+k] * B[k*N+j]; }
C[i*N+j] = sum;

}
}
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Optimization – Memory!
Block-wise traversal in code:

for(int bi=0; bi<Bs; ++bi){ //block index 1

for(int bj=0; bj<Bs; ++bj){ //block index 2

for(int bk=0; bk<Bs; ++bk){ //block index 3

auto i0 = bi * b; auto j0 = bj * b; auto k0 = bk * b;

for(int i=0; i<b; ++i ){ auto ii = i0 + i;

for(int j=0; j<b; ++j ){ auto jj = j0 + j; double sum = 0.0;

for(int k=0; k<b; ++k ){ sum += A[i*N+k0+k] * B[(k0+k)*N+j]; }

C[i*N+j] += sum;

}

}

}

}
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Optimization – Memory!
Block-wise traversal timings: 
N = 1024

𝐶𝑖𝑘 = 𝐴𝑖𝑗𝐵𝑗𝑘

Block size Time [seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 (equivalent to naive) 36.1
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Optimization – Memory!

CAUTION: Pitfall danger!
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Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• Cache is split into lines

• When data is being stored into the cache the destination line is selected 
by looking at the last few bits of the address
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Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• Cache is split into lines

• When data is being stored into the cache the destination line is selected 
by looking at the last few bits of the address
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Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• If the stride in this example is 16 (binary: 10000)

+16 (+10000b)
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Optimization – Memory!
Large powers of two strides can kill the cache mechanism!

Why?

• If the stride in this example is 16 (binary: 10000)

• The new data will overwrite exactly the earlier one,
although there would be free space in the cache!

Same cache line address
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Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time 
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1
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Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time 
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1

N = 1023
Block size

Time 
[seconds]

1 10.4

3 2.8

11 1.8

13 1.7

33 1.8

93 2.7

341 2.9

1023 6.8
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Optimization – Memory!
Same matrix multiplication again:

N = 1024
Block size

Time 
[seconds]

1 74

2 17.1

4 5.8

8 2.7

16 2.9

32 2.7

64 2.48

128 2.6

256 2.6

512 15.5

1024 36.1

N = 1023
Block size

Time 
[seconds]

1 10.4

3 2.8

11 1.8

13 1.7

33 1.8

93 2.7

341 2.9

1023 6.8

N = 1025
Block size

Time 
[seconds]

1 10.9

5 2.1

25 1.8

41 1.7

205 2.6

1025 8.5
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Optimization – Memory!
Another example: Massive convolution

Image data:

• 512 x 512 x 32 channels

Kernel

• 128 different 3 x 3 x 32 channel kernels

The 512x512 images convolved with the 3x3 kernels and summed over the 
channels, repeated for all 128 different kernels
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Optimization – Memory!
Another example: Massive convolution

Kernel storage order (row major): filter -> y -> x -> channel

Image storage order (row major): y -> x -> channel

Only x direction is block grouped, because x-y could not fit in the cache at 
the same time.
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Optimization – Memory!
Another example: Massive convolution

Kernel storage order (row major): filter -> y -> x -> channel

Image storage order (row major): y -> x -> channel

Only x direction is block grouped, because x-y could not fit in the cache at 
the same time.

Channel should be the last, the contiguous, 
so the frequent summation does not suffer
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Optimization – Memory!
Another example: Massive convolution

Loop order:

• Image y, image x block

• Kernel (128)

• Kernel y-x (3x3)

• Channel (32)

• Image x in block
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Optimization – Memory!
Another example: Massive convolution

Loop order:

• Image y, image x block

• Memcopy to temporary image array [3 x 32 x blocksize]

• Kernel (128)

• Kernel y-x (3x3)

• Channel (32)

• Image x in block
Turns out, that the image stride is so big, 
that it is much better to memcopy together 
3 lines of the image
(3 lines of all 32 channels)
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Optimization – Memory!

Short summary:

• Block traversal is much better than naive traversal

• Keep the strides small

• Keep the strides away from powers of two!

• Applies to:
• Linear Algebra

• Finite differences

• Image processing
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Optimization – Memory!

• Still memory access and locality

• The never ending story
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Optimization – Memory!

• N-body simulation.

• See last year for a discussion from the beginning

• But last year we did not go into space partitioning...
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Optimization – Space partitioning

• Split the simulation area into blocks

• Each block has an array of particles 
that are physically inside it

• Periodically update the blocks to 
account for particles leaving / 
entering
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Optimization – Space partitioning

Expected improvements:

• Only calculate interaction inside 
blocks

• N^2 / 2 cost reduces greatly

Expected deteriorations:

• Force calculation looses precision
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Optimization – Space partitioning

But there are more improvements!

• More data locality inside the blocks
• Better cache usage

• Easier multi-threading
(less and more predictable data races to avoid)

• More efficient data reductions
(like correlation functions)
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Optimization – Space partitioning

Outline of one simulation step (N_cell = 30^2, N_part = N_total / N_cell):

1. Place particles into cells (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)

2. Inter-cell pair interactions (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡
2 /2)

3. Exact interaction of nearest neighbor cells (Cost: 4𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡
2 /2)

4. Calculate center-of-mass data (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)

5. Center-of-mass interaction of cells (Cost: 𝑁𝑐𝑒𝑙𝑙
2 )

6. Step particles (Cost: 𝑁𝑐𝑒𝑙𝑙𝑁𝑝𝑎𝑟𝑡)
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Optimization – Space partitioning

Outline of one simulation step
(N_cell = 30^2, N_part = 25k / N_cell):

1. Place particles into cells 1 ms (2%)

2. Inter-cell pair interactions 5.5 ms (11%)

3. Exact interaction of nearest neighbor cells 33 ms (67 %)

4. Calculate center-of-mass data 1.3 ms (3%)

5. Center-of-mass interaction of cells 7.4 ms (15%)

6. Step particles 0.8 ms (1.7%)

Total: 49 ms
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Summary

This talk mainly focused on memory access optimizations

These give a large percent of performance losses that can be addressed 
by average amount of work and compilers wont do it automatically

Take home message:

Linear forward contiguous access

Hardware prefers spatiotemporal locality of data access
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