Quisner

Parallelism in C++

Lectures on Modern Scientific Programming 2016

Quisner
Outline

* This talk introduces the fundamental parallel programming constructs
that became standardized with C++11

* So these constructs are now portable and easily accessible

Why do we need parallelism?

40 Years of Microprocessor Trend Data

10/

1 T 1 T
106 - A*‘:A:A -
A Ati; AA
105 I S S L] AATA w -
H A A H .
(AL A o2
4 S g ¢ '§°~
10 o << iaszsssasssssassssssszsafassssssssssssizssssssssssasdasssssszsazsss A--A} .r d ... —

A
- vV 220
101 - A . """ . """"""""""" _ :v """" AR L 2 Qg" """""""""" .
o - v v 'vé" vv : .
10° --s---q -------- ‘----0«;0--4»-0“%00 ---------- IR -
i i | I
1970 1980 1990 2000 2010
Year
11/15/2016 Lectures on Modern Scientific Programming 2016

2020

»

uiGner

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

Sources: 1., 2.

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

»

yicner
Why do we need parallelism?

40 Years of Microprocessor Trend Data
107 ! T ! T

Transistors

thousands
108 ()

Single-Thread
Performance

| (SpecINT x 10°)

Frequency (MHz)>

Typical Power
(Watts)

Number of

1 -
10 A Logical Cores
A = v : : SN0 |
10° --s---q ------------ R ‘----Oﬁo--ﬂ-mwoo ---------- e -
| i i 1
1970 1980 1990 2000 2010 2020 Sources: 1., 2.

Year
11/15/2016 Lectures on Modern Scientific Programming 2016 4

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Why do we need parallelism?

40

Years of Microprocessor Trend Data

Quisner

What is going on?

Sources: 1., 2.

.
10 ! ! Transistors
5 | | f thousands
108 ol ATAMA 1)
s, . N A Single-Thread
10 : s :
5 s - Performance
104 b NI .
AT S
; L AA QAT A e Frequency (MHz
03 b RN 3 quency (MHz)
z ; ° : ;
A Y ol gt i Typical Power
107 [B A g !"-----v--;--iw;vgﬁvavfi? ----------- 4 (Watts)
A . vy v v | o'i
B R AR A s20? _| Number of
10 A = ® Ty A B4 Logical Cores
i u ;Y v Yv¥ o vv 5 0002&
v H H H
100 --s---ﬁ ------------ * e ‘----Oﬁo--«r-mwoo ---------- oo -
i | | I
1970 1980 1990 2000 2010 2020
Year
11/15/2016 Lectures on Modern Scientific Programming 2016

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Quisner
Why do we need parallelism?

* Before 2000’s computers become faster because the clock frequency
increased every year.

* It hit a certain threshold because of cooling, so it converged to
approximately 1-3 GHz.

* The only way to increase computing power is to parallelize...

* Additional transistors are used to duplicate execution units to run
more and more tasks in parallel

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

* Bit-level

* Instruction-level

e Vector-level

e Task/Device-level

* Process/Cluster-level

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

 Bit-level < Multiple bits inside one register©
* Instruction-level

* Vector-level

e Task/Device-level

* Process/Cluster-level

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

* Bit-level

* Instruction-level <
e Vector-level

e Task/Device-level
* Process/Cluster-level

Multiple instructions executing at
the same time in the pipeline

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

* Bit-level

* Instruction-level

e Vector-level “
e Task/Device-level
* Process/Cluster-level

The same instruction operates on
multiple data at the same time

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

* Bit-level

* Instruction-level

* Vector-level Multiple threads are running at
e Task/Device-level < the same time, but they share in

* Process/Cluster-level >OME Way a common memory

Levels of Parallelism

Quisner

* There are multiple levels of parallelism available:

* Bit-level

* Instruction-level
* Vector-level

e Task/Device-level

* Process/Cluster-level <«

Multiple processes are running on
the same or different computers,
no direct memory access

(just message passing)

| Qwisner
Levels of Parallelism

* There are multiple levels of parallelism available:

=

* Bit-level
e |Instruction-level — Taken care by the processor and the compiler

In some edge cases you might want to tweak at the vector level

* Vector-level _
e Task/Device-level
* Process/Cluster-level

11/15/2016 Lectures on Modern Scientific Programming 2016 13

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

e Bit-level
* |nstruction-level
e \Vector-level

* Task/Device-level It is the programmer’s task
* Process/Cluster-level to write the parallel logic

| Quisner
Levels of Parallelism

* There are multiple levels of parallelism available:

e Bit-level
* |nstruction-level
e \Vector-level

* Task/Device-level If you don’t use this, you are wasting
 Process/Cluster-level resources, and your code will never be faster

| Qwisner
Levels of Parallelism

* There are multiple levels of parallelism available:

* Task/Device-level =« This talk deals with this level!

11/15/2016 Lectures on Modern Scientific Programming 2016 16

Quisner
Threads

* Thread is the logical unit of execution.

* It has a separate stack

* A state of it’s own

* It is scheduled by the operating system (CPUs) or by the hardware (GPUs)
* When it is executing it is associated to some hardware resource.

11/15/2016 Lectures on Modern Scientific Programming 2016 17

Quisner

Threads v

- O x
Fajl Bedllitdasok MNézet
Folyamatok Teljesitmény Alkalmazaselézmeények Inditdas Felhasznalok Részletek Szolgaltatdsok
Processzor
5% 2,67 GHz Processzor AMD FX-7500 Radeon R7, 10 Compute Cores 4C+6G

[] TOd ays CO m p Ute rS Mermbria 5zazalékos kihasz\nansag eqy percre vetitve o
T | 46/6968(67%) I |
manage hundreds | | |

0. lemez (C) | \ '

or t h ousan d S Of 0% SN N . - Il A R
threads!

Ethernet
K: 0 F: 16,0 Kb/s

[
|
R _ . ! \/ A .
[V N e N e | i
Kihasznaltsag Sebesség Maximalis sebesség: 210 GHz
Foglalatok: 1
- On a handful of 267cHe
n a a n u 0 ! Magolk: 4

Folyamat Szalak Leirok Legikai processzorok: 4
CO re S 168 2526 86084 Vvitualizalas Engedélyezve
eee Elsd szintl gyorsitotar: 448 KB

Inditas ota eltelt idd

1:03:01:43

Mascdik szintd gyorsitétan 8,0 MB

Kevesebb részlet '\'E\ Az Ercforras-figyelé megnyitasa

e How?

11/15/2016 Lectures on Modern Scientific Programming 2016 18

Quisner
Threads

* Threads have states:

The trick is, that only this one is
using the execution unit

* Executing <
* Waiting

* Suspended

e ...etc

11/15/2016 Lectures on Modern Scientific Programming 2016 19

Quisner
Threads

* Threads have states:

* Executing

* Waiting) These are put aside,
* Suspended they aren’t executing
o ...etc

11/15/2016 Lectures on Modern Scientific Programming 2016 20

Quisner
Threads in C++

* There is always at least one thread in the program:

* The “main” thread, the one that hosts the main() function

* |t is created when the operating system starts our program and destroyed
at exit.

Quisner
Threads in C++

The thread executing the current function at hand can be managed by
the following functions in the std: :this thread namespace:

e std::yield
* allow other threads to be scheduled first

e std::sleep for, std::sleep until

* suspend current thread for a given time or until a specific time point

11/15/2016 Lectures on Modern Scientific Programming 2016 22

»

uisner
Threads in C++

All other threads are represented in C++ as objects:
#include <thread>

std: :thread t;

11/15/2016 Lectures on Modern Scientific Programming 2016 23

»

uisner
Threads in C++

A simple example to start a thread:

#tinclude <thread>
#include <iostream>

int main()

{
auto task = [](){ std::cout << "done.\n"; };
std::thread t(task);
t.join();
return 9;

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 24

Quisner

Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream> This is the function that we wish

to execute in a separate thread
int main()

{
auto task = [](){ std::cout << "done.\n"; };
std::thread t(task);
t.join();
return 9;

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 25

»

uisner
Threads in C++

A simple example to start a thread:

#tinclude <thread>
#include <iostream>

int main()

{
auto task = [](){ std::cout << "done.\n"; };
std::thread t(task);
t.50in(); ‘-\\\\\\\\.Theconsulmiorofthread13kes
return 0; the. function and starts it in a new
} logical thread.

11/15/2016 Lectures on Modern Scientific Programming 2016 26

»

uisner
Threads in C++

A simple example to start a thread:

#tinclude <thread>
#include <iostream>

int main()

{
auto task = [](){ std::cout << "done.\n"; }%;

std::thread t(task); S
t.join(); « Here the “main” thread

return 0; waits for t to finish.

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 27

»

uisner
Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>
#include <iostream>

int main()

{
auto task = [](int x){ std::cout << x << "\n"; };
std::thread t(task, 7);
t.join();
return 9;

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 28

»

uisner
Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>
#include <iostream>

int main()

{
auto task = [](int x){ std::cout << x << "\n"; };
std::thread t(task, %ﬁ;\\\)
t.join();
return 9;

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 29

Quisner
Threads in C++

std: :thread t(task, 7);

* This only works for functions, that do not return values...
 How to get back a result?

11/15/2016 Lectures on Modern Scientific Programming 2016 30

| | Cuisner
Promises and Futures in C++

#include <future>
std: :promise<T> promise;
std: :future<T> future = promise.get future();

* The promise — future pair represents a one-time asynchronous
communication channel:

* The thread that has a value can set the promise once

* Another thread that has a future linked to the promise can wait for
the value to become available and extract it.

11/15/2016 Lectures on Modern Scientific Programming 2016 31

»

| | wicGner
Promises and Futures in C++

#include <thread>
#include <future>
int main()
{
std: :promise<int> promise;
std: :future<int> future = promise.get future();
auto f = [](std::promise<int> p in, int x){ p in.set value(2*x); };

std::thread t(f, std::move(promise), 21);
std::cout << "Result: " << future.get() << "\n";
t.join();

11/15/2016 Lectures on Modern Scientific Programming 2016 32

Quisner

Promises and Futures in C++

#include <thread>
#include <future>
int main()

{

Create a promise-future
linked pair, that will

. . . transfer an int.
std: :promise<int> promise;

std: :future<int> future = promise.get future();
auto f = []J(std::promise<int> p in, int x){ p in.set _value(2*x); };

std::thread t(f, std::move(promise), 21);
std::cout << "Result: " << future.get() << "\n";
t.join();

11/15/2016 Lectures on Modern Scientific Programming 2016 33

Quisner

Promises and Futures in C++

#include <thread>
#include <future>
int main()

{

Create a function that
will take the promise and
sets it

std: :promise<int> promise;
std: :future<int> future = promise.get future();
auto f = []J(std::promise<int> p in, int x){ p in.set _value(2*x); };

std::thread t(f, std::move(promise), 21);
std::cout << "Result: " << future.get() << "\n";
t.join();

11/15/2016 Lectures on Modern Scientific Programming 2016 34

»

uiGner

Promises and Futures in C++

#include <thread>
#include <future>
int main()

{

std: :promise<int> promise;
std: :future<int> future = promise.get future();
auto f = []J(std::promise<int> p in, int x){ p in.set _value(2*x); };

std::thread t(f, std::move(promise), 21);
std::cout << "Result: " << future.get() << "\n";

t.join(); Start the thread and pass

on the promise

11/15/2016 Lectures on Modern Scientific Programming 2016 35

»

uiGner

Promises and Futures in C++

#include <thread>
#include <future>
int main()

{

std: :promise<int> promise;
std: :future<int> future = promise.get future();
auto f = []J(std::promise<int> p in, int x){ p in.set _value(2*x); };

std::thread t(f, std::move(promise), 21);
std::cout << "Result: " << future.get() << "\n";

t.join();
The main thread will wait here, until the future is

set, and .get () extractsthe value (42)

11/15/2016 Lectures on Modern Scientific Programming 2016 36

Quisner
std::async

Sometimes we just need a function returning a value,

and we don’t want to mess with starting the thread and linking the
promise...

std: :async solves precisely this problem!

»

uicGner
std::async

#include <future>
int main()
{
auto f = [](int x){ return 2*x; };

auto future = std::async(std::launch::async, f, 21);

std::cout << "Result: " << future.get() << "\n";

11/15/2016 Lectures on Modern Scientific Programming 2016 38

Quisner

std::async

#include <future>
Starts function in a new thread,

: : returns a future that will hold the result.
int main()

{

auto £ = [](int x){ return 2*x;
auto future = std::async(std::launch::async, f, 21);

std::cout << "Result: " << future.get() << "\n";

11/15/2016 Lectures on Modern Scientific Programming 2016 39

»

uicGner
std::async

#include <future>

int main()

{
auto £ = [](int x){ return 2*x; };
auto future = std::async(std::launch::async, f, 21);
std::cout << "Result: " << future.get() << "\n";

}

“main” thread waits here for the result
to become available.

11/15/2016 Lectures on Modern Scientific Programming 2016 40

Quisner
std::async

Rule of the thumb:

* Most of the time all you need is an async. Start the task, get back result.

* |f you want intermediate one-time communication and synchronization
between two threads one choice is to use promise-future pairs.

11/15/2016 Lectures on Modern Scientific Programming 2016 41

uisner
Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it6, auto itl)

{

auto sum = std::accumulate(ito, itl, 0.0);
return sum / std::distance(ito, itl);

s

11/15/2016 Lectures on Modern Scientific Programming 2016 42

uisner
Example: large vector average

Task: average a large vector with multiple threads: o
C++11 fancy: digit separators,

does not change the number
std::vector<double> VEC(l@ '000" @@@) 5 just helps reading

auto averager = [](auto it6, auto itl)

{

auto sum = std::accumulate(ito, itl, 0.0);
return sum / std::distance(ito, itl);

s

11/15/2016 Lectures on Modern Scientific Programming 2016 43

uisner
Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

Helper: takes two iterators
and averages the numbers

— between them.

auto averager = [](auto it6, auto itl)

{

auto sum = std::accumulate(ito, itl, 0.0);
return sum / std::distance(ito, itl);

s

11/15/2016 Lectures on Modern Scientific Programming 2016 44

uisner
Example: large vector average

auto n = std::thread::hardware _concurrency();

std::vector<std: :future<double>> futures(n);

11/15/2016 Lectures on Modern Scientific Programming 2016 45

uisner
Example: large vector average

auto n = std::thread::hardware _concurrency();

Returns the number of threads that can run in parallel
(usually number of logical cores)

std::vector<std: :future<double>> futures(n);

11/15/2016 Lectures on Modern Scientific Programming 2016 46

uisner
Example: large vector average

auto n = std::thread::hardware _concurrency();

We can simply create a vector of futures

N

std::vector<std: :future<double>> futures(n);

11/15/2016 Lectures on Modern Scientific Programming 2016 47

uisner
Example: large vector average

Start the threads:

auto step = 1 + (int)vec.size() / n;
for(int k=0; k<n; ++k)

{

auto 1to
auto itl

std: :next(vec.begin(), k * step);
std: :next(vec.begin(),
std::min((k+1) * step,(int)vec.size()));
futures[k] = std::async(std::launch::async,
averager, ite, itl);

11/15/2016 Lectures on Modern Scientific Programming 2016 48

uisner
Example: large vector average

Start the threads:

Here we divide the whole

auto step = 1 + (int)vec.size() / n; range into ‘step’ sized chunks

for(int k=0; k<n; ++k)
{

auto 1to
auto itl

std: :next(vec.begin(), k * s);
std: :next(vec.begin(),
std::min((k+1) * step,(int)vec.size()));
futures[k] = std::async(std::launch::async,
averager, ite, itl);

11/15/2016 Lectures on Modern Scientific Programming 2016 49

uisner
Example: large vector average

Start the threads:

auto step = 1 + (int)vec.size() / n;
for(int k=0; k<n; ++k)

{

auto 1to
auto itl

std: :next(vec.begin(), k * step);
std: :next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));
futures[k] = std::async(std::launch::async,

,///”' averager, ito, itl);

} And start the thread, store the future...

11/15/2016 Lectures on Modern Scientific Programming 2016 50

uisner
Example: large vector average

Collect the results:

auto partial avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>&)

{
return acc + f.get();

o)

11/15/2016 Lectures on Modern Scientific Programming 2016 51

uisner
Example: large vector average

Collect the results: lterate over the futures of the threads

auto partial avg = //////

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>&)

{
return acc + f.get();

o)

11/15/2016 Lectures on Modern Scientific Programming 2016 52

uisner
Example: large vector average

Collect the results: At each step, wait for the future and add
the thread’s result to the accumulator.

auto partial avg =

std::accumulate(futures.begin(
futures.end()
0.0,

[](double acc, std:;

{
return acc + f.get();

o)

uture<double>& f)

11/15/2016 Lectures on Modern Scientific Programming 2016 53

uisner
Example: large vector average

And the final result is:

std::cout << "Average 1is:
<< result / (double)n << "\n";

(where n was the number of threads®©)

11/15/2016 Lectures on Modern Scientific Programming 2016 54

uisner
Example: large vector average

Notes:

* When in C++17 parallel algorithms become available, you don’t need to write
such constructs anymore (at least in simple cases covered by transform and reduce).

* |f you need to write it anyway, you can always write the range division once,

and parametrize over the task.
This becomes very useful if you need overlapping ranges for some reason.

* The optimal number of thread may not be simply
std: :thread: :hardwa r‘e_concur‘r‘ency() . Experiment with less and more.

11/15/2016 Lectures on Modern Scientific Programming 2016 55

Quisner
Now comes the messy part...

11/15/2016 Lectures on Modern Scientific Programming 2016 56

| | Quisner
Sharing and mutation

There are two basic aspects of data in relation to threads:
e Sharing

* Access type

| | Quisner
Sharing and mutation

There are two basic aspects of data in relation to threads:

e Sharing:

* More than a single thread have access to the same data, resource, ...

* Access type:
e A resource can be read (used) and written (modified, mutated)

Quisner

Sharing and mutation

There are two basic aspects of data in relation to threads:

11/15/2016 Lectures on Modern Scientific Programming 2016 59

Quisner

Sharing and mutation

There are two basic aspects of data in relation to threads:

BT

11/15/2016 Lectures on Modern Scientific Programming 2016 60

Quisner

Sharing and mutation

There are two basic aspects of data in relation to threads:

BT

11/15/2016 Lectures on Modern Scientific Programming 2016 61

Quisner

Sharing and mutation

There are two basic aspects of data in relation to threads:

BT

11/15/2016 Lectures on Modern Scientific Programming 2016 62

Quisner
Sharing and mutation

* Shared mutable state is the root of all evil!

* If two or more threads would like to modify the same shared resource
we are dealing with a race condition.

 Specifically data writes occurring under a race condition can produce
wrong results or corrupted data.

11/15/2016 Lectures on Modern Scientific Programming 2016 63

Quisner
Sharing and mutation

* Shared mutable state is the root of all evil!
Moreover!

 Since thread execution is essentially random, race conditions are
extremely hard to reproduce or debug!

11/15/2016 Lectures on Modern Scientific Programming 2016 64

»

uiGner
Race conditions

Some illustrations of the consequences:

* Therac-25 was a linear accelerator
to deliver x-rays and electron beams
for cancer treatment.

* This 3" generation device was the first
to have full computer control

11/15/2016 Lectures on Modern Scientific Programming 2016 65

»

uiGner
Race conditions

Some illustrations of the consequences:

* Between 1985-87 multiple patients
were overdosed because of a race
condition in the design of the driver
logic.

11/15/2016 Lectures on Modern Scientific Programming 2016 66

uisner
Race conditions

Some illustrations of the consequences:

* In 2003 a large blackout affecting 55
million people in Canada and North US
happened.

* The crew of the control room did not
became aware of the problem because
of a race condition prevented alarms. 45

23:15 EST 14 Aug.

11/15/2016 Lectures on Modern Scientific Programming 2016 67

- " Quisner
Avoiding race conditions

There are multiple ways of avoiding such cases:
* Use no shared mutable state!

* Use synchronization and concurrency control primitives...

Quisner
Synchronization primitives in C++

In C++11 the following primitives were standardized:

* Mutexes
e Locks
e Condition variables

Quisner

Mutexes

Mutex stands for “mutual exclusion”:

* Protects shared data from being accessed by more than 1 thread at a
time.

Lock

Mutex Resource

Cannot)
lock!

11/15/20 |_lectureson Maodern Skientific Prog

70

»

gicner
Mutexes

Types of mutexes available since C++11:

e std: :mutex two operations: can be locked and unlocked
e std: :timed mutex can keep trying to lock for or until some time

e std::recursive mutex can be locked multiple times, unlock need to be
repeated the same number of times.

e std::recursive timed mutex combination of the above two

11/15/2016 Lectures on Modern Scientific Programming 2016 71

»

uiGner
Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended:

e std::lock guard< >
e std::unique lock< >

11/15/2016 Lectures on Modern Scientific Programming 2016 72

uisner
Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended: .
The template parameter is any

mutex from the previous list.
e std::lock guard< /

e std::unique lock< ™>

11/15/2016 Lectures on Modern Scientific Programming 2016 73

»

uiGner
Mutexes and locks

std::lock guard< > isaRAlldriven helper:
* |t’s constructor locks,

* it’s destructor unlocks.

Typical usage is in a scope:

std: :mutex m;
{ //some scope, like a function body
std::lock guard<std::mutex> lock(m);

//use the shared resource

} //at scope end the mutex is automatically unlocked

11/15/2016 Lectures on Modern Scientific Programming 2016 74

http://en.cppreference.com/w/cpp/language/raii

Quisner
Mutexes and locks

Example: safely resizing a shared vector

std: :mutex mutex;
std: :vector<int> data;

std::lock guard<std::mutex> guard(mutex);
data.resize(100);

}

11/15/2016 Lectures on Modern Scientific Programming 2016 75

Quisner
Mutexes and locks

std::unique lock< > isa mutex wrapper, thatis
* movable and assignable

e RAIl style as lock_guard
 But has the same interface as a mutex: can be locked and unlocked

11/15/2016 Lectures on Modern Scientific Programming 2016 76

Quisner

Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to
lock different mutexes in a different order:

Mutex 1 Resource 1
Thread 1

Locked by 1

Mutex 2 Resource 2
Thread 2 Locked by 2

11/15/2016 Lectures on Modern Scientific Programming 2016 77

Quisner

Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to
lock different mutexes in a different order:

Mutex 1 Resource 1
Locked by 1

Thread 1 Ce

Mutex 2 Resource 2

Thread 2 gb‘\(\ Locked by 2

11/15/2016 Lectures on Modern Scientific Programming 2016 78

Quisner
Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to
implement them, std: :1lock knows them!

Quisner
Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std: :lock knowsthem!

std::mutex ml, m2;

{

std::unique lock<std::mutex> lockl(ml, std::defer_lock);
std::unique lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lockl, lock2);
//use resources

11/15/2016 Lectures on Modern Scientific Programming 2016 80

Quisner
Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std: :lock knowsthem!

std::mutex ml, m2; Mark constructors not to lock yet!

{

std::unique lock<std::mutex> lockl(ml, std:ydefer lock);
std::unique lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lockl, lock2);
//use resources

11/15/2016 Lectures on Modern Scientific Programming 2016 81

Quisner
Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std: :lock knowsthem!

std::mutex ml, m2;

{
std::unique lock<std::mutex> lockl(ml, std::defer_lock);
std::unique lock<std::mutex> lock2(m2, std::defer_lock);
std::lock(lockl, lock2);
//use resources ‘55\“---

¥

Safely lock multiple lockables,
avoiding deadlock

11/15/2016 Lectures on Modern Scientific Programming 2016 82

Quisner
Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std: :lock knowsthem!

std::mutex ml, m2;

{
std::unique lock<std::mutex> lockl(ml, std::defer_lock);
std::unique lock<std::mutex> lock2(m2, std::defer_lock);
std::lock(lockl, lock2);
//use resources

} +

Unlock happens automatically at
the scope end

11/15/2016 Lectures on Modern Scientific Programming 2016 83

Quisner

More primitives

In C++ 14 and 17 the following additional primitives were introduced:
std: :shared mutex
std: :shared timed mutex

std: :shared lock« >

Shared means that there are two lock states: shared and exclusive

* Multiple threads can take a shared lock (eg.: multiple read access)

* Only 1 thread can take an exclusive lock (eg.: write access)

 All shared locks must unlock before an exclusive lock can take place!

11/15/2016 Lectures on Modern Scientific Programming 2016 84

Quisner

std::condition variable is grouping together mutual exclusion
and wait-for-modification functionality:

Conditional variables

Modifying thread need to Waiting threads need to

1.: Acquire a mutex 1.: Lock on the mutex
2.: Modify the shared resource 2.: Wait on the lock with the cond. var.
3.: Release the mutex and notify the 3.: When woken up, they have the mutex

others acquired

11/15/2016 Lectures on Modern Scientific Programming 2016 85

Conditional variables

Quisner

std::condition variable is grouping together mutual exclusion

and wait-for-modification functionality:

std::condition variable cv;
std: :mutex m;

//Writing thread: //Reading threads:

{ {
std::unique lock<std::mutex> lock(m); std::unique lock<std
//modify resource cv.wait(lock);
cv.notify all(); //use resource

} }

11/15/2016 Lectures on Modern Scientific Programming 2016

::mutex> lock(m);

86

. . uicner
Conditional variables Q

The wakeup is guaranteed to affect only those threads that started
waiting before the notification was sighaled.

However: it is not guaranteed that a wake-up is always preceded by a
notification! This is called spurious wake-up.
Reasons for these root deep in OS kernel programming (link).

11/15/2016 Lectures on Modern Scientific Programming 2016 87

http://blog.vladimirprus.com/2005/07/spurious-wakeups.html

, Quisner
Spurious wake-ups

To ignore spurious wake-ups, it is recommended to check whether a
modification took place. This is provided by the wait overloads that take a
predicate:

template< class Predicate >
void wait(std::unique lock<std::mutex>& lock,
Predicate pred)

{
while (!pred())
{
wait(lock);
}

¥

11/15/2016 Lectures on Modern Scientific Programming 2016 88

, Quisner
Atomics

An atomic operation is a simple operation that cannot be interrupted
by an other thread.

e Atomics are for very simple types and very simple operations
* They are provided by hardware
* They are the cheapest way to protect data from races

| uisner
Atomics

Since C++11 we have std: :atomic<T>

The template is defined for any type, but only simple types are using
atomics directly, more complex ones use locks under the hood.

You can query if it is lock-free or not.

11/15/2016 Lectures on Modern Scientific Programming 2016 90

http://en.cppreference.com/w/cpp/atomic/atomic_is_lock_free

| Quisner
Atomics

The following operations are provided on std: :atomic<T>

* Load and store

* Exchange, compare-and-exchange
e Add, subtract

e Logical AND, OR, XOR

11/15/2016 Lectures on Modern Scientific Programming 2016 91

| uisner
Atomics

The following operations are provided on std: :atomic<T>

* Load and store
* Exchange, compare-and-exchange
e Add, subtract

:|— These are available as operators too!
e Logical AND, OR, XOR

11/15/2016 Lectures on Modern Scientific Programming 2016 92

, Quisner
Atomics

Unfortunately, an std: :atomic<T> is not copy able and not
assignable!

This means, you cannot create an std: :vector<std: :atomic<T>>!

You can however, work around...

11/15/2016 Lectures on Modern Scientific Programming 2016 93

»

, gicner
Atomics

template <typename T>
struct atomic_wrapper
{
std::atomic<T> data;
atomic_wrapper():data(){}
atomic_wrapper(atomic wrapper const& copy)
data(copy.data.load()){}
atomic_wrapper& operator=(atomic_wrapper const& copy)
{
data.store(copy.data.load());
return *this;

}
s

11/15/2016 Lectures on Modern Scientific Programming 2016 94

»

, gicner
Atomics

template <typename T>
struct atomic_wrapper
{
std::atomic<T> data;
atomic_wrapper():data(){}
atomic_wrapper(atomic wrapper const& copy)
data(copy.data.load()){}
atomic_wrapper& operator=(atomic_wrapper const& copy)

{
data.store(copy.data.load());

return *this;
}

1 Atomic operations

11/15/2016 Lectures on Modern Scientific Programming 2016 95

| uisner
Atomics C

Now you can create a vector, since atomic wrapper is copy able.

std: :vector<std::atomic wrapper<T>> v;

11/15/2016 Lectures on Modern Scientific Programming 2016 96

. (uisner
Atomics example

Typical use case: multi threaded histogramming

Case:

* 10M data points
* 4 threads

* 30 bins

Result:

* Without atomics ~3M hits are lost due to race conditions, total time is 470 ms
 With atomics, the results are correct, total time is 1070 ms

Outlook to C++17 isner

* What to expect from the new standard

11/15/2016 Lectures on Modern Scientific Programming 2016 98

Outlook to C++17 (Wisnar

 Parallelized forms of std algorithms:
std::transform(policy, itl, it2, it3, f);

Policies:
* seqg — sequential (normal, as now) execution
e par — parallel execution in multiple threads

e par_vec — vectorized parallel execution
(loads and evaluations might be interleaved)

11/15/2016 Lectures on Modern Scientific Programming 2016 99

Outlook to C++17 (Wisnar

e Continuation form in std: : future:

You can chain functions with this:

int x = 2;
auto future = std::async(std::launch::async,

[](auto y){ return y+1; }, x);
future.then([](auto y){ return y*10; });

auto future2

11/15/2016 Lectures on Modern Scientific Programming 2016 100

http://en.cppreference.com/w/cpp/experimental/future/then

Outlook to C++17 isner

e Merging of std: : futures

You can merge and wait for multiple futures:

auto final futurel = std::when_all(futurel, future2, ...);

auto final future2 = std::when_any(futurel, future2, ...);

11/15/2016 Lectures on Modern Scientific Programming 2016 101

http://en.cppreference.com/w/cpp/experimental/when_all

Outlook to C++17 isner

* New synchronization primitives:

e std::latch

* implements a count-down barrier: a given number of threads can run into and get
blocked. All threads released when the number is reached. Single use!

e std: :barrier
e Similar to latch, but reusable

e Std::flex barrier

* Similar to barrier, but the user can specify an arbitrary function to execute when the
specified number of threads hit the barrier.

»

Outlook to C++17 laner

e std::atomic shared ptr<T>:

* Merges the merits of std: :shared pointer and std::atomic.

11/15/2016 Lectures on Modern Scientific Programming 2016 103

http://en.cppreference.com/w/cpp/experimental/atomic_shared_ptr

(uisner
summary

Parallel programming is not overly complicated if you have the right
primitives

* Most of the time std::async is good for you

* Finer control can be done with std::thread

* Inter thread communication possibilities

* Beware of shared mutable states!

e C++17 parallel algorithms will take even more burden off from the
developers

