
Parallelism in C++
Lectures on Modern Scientific Programming 2016

Dániel Berényi

Wigner GPU Lab

Outline

• This talk introduces the fundamental parallel programming constructs
that became standardized with C++11

• So these constructs are now portable and easily accessible

11/15/2016 Lectures on Modern Scientific Programming 2016 2

Why do we need parallelism?

Sources: 1., 2.

11/15/2016 Lectures on Modern Scientific Programming 2016 3

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Why do we need parallelism?

Sources: 1., 2.

11/15/2016 Lectures on Modern Scientific Programming 2016 4

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Why do we need parallelism?

Sources: 1., 2.

What is going on?

11/15/2016 Lectures on Modern Scientific Programming 2016 5

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Why do we need parallelism?

• Before 2000’s computers become faster because the clock frequency
increased every year.

• It hit a certain threshold because of cooling, so it converged to
approximately 1-3 GHz.

• The only way to increase computing power is to parallelize...

• Additional transistors are used to duplicate execution units to run
more and more tasks in parallel

11/15/2016 Lectures on Modern Scientific Programming 2016 6

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

11/15/2016 Lectures on Modern Scientific Programming 2016 7

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple bits inside one register

11/15/2016 Lectures on Modern Scientific Programming 2016 8

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple instructions executing at
the same time in the pipeline

11/15/2016 Lectures on Modern Scientific Programming 2016 9

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

The same instruction operates on
multiple data at the same time

11/15/2016 Lectures on Modern Scientific Programming 2016 10

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple threads are running at
the same time, but they share in
some way a common memory

11/15/2016 Lectures on Modern Scientific Programming 2016 11

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
Multiple processes are running on
the same or different computers,
no direct memory access
(just message passing)

11/15/2016 Lectures on Modern Scientific Programming 2016 12

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Taken care by the processor and the compiler

In some edge cases you might want to tweak at the vector level

11/15/2016 Lectures on Modern Scientific Programming 2016 13

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
It is the programmer’s task
to write the parallel logic

11/15/2016 Lectures on Modern Scientific Programming 2016 14

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
If you don’t use this, you are wasting
resources, and your code will never be faster

11/15/2016 Lectures on Modern Scientific Programming 2016 15

Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

This talk deals with this level!

11/15/2016 Lectures on Modern Scientific Programming 2016 16

Threads

• Thread is the logical unit of execution.

• It has a separate stack

• A state of it’s own

• It is scheduled by the operating system (CPUs) or by the hardware (GPUs)

• When it is executing it is associated to some hardware resource.

11/15/2016 Lectures on Modern Scientific Programming 2016 17

Threads

• Todays computers
manage hundreds
or thousands of
threads!

• On a handful of
cores...

• How?

11/15/2016 Lectures on Modern Scientific Programming 2016 18

Threads

• Threads have states:

• Executing

• Waiting

• Suspended

• ...etc

The trick is, that only this one is
using the execution unit

11/15/2016 Lectures on Modern Scientific Programming 2016 19

Threads

• Threads have states:

• Executing

• Waiting

• Suspended

• ...etc

These are put aside,
they aren’t executing

11/15/2016 Lectures on Modern Scientific Programming 2016 20

Threads in C++

• There is always at least one thread in the program:

• The “main” thread, the one that hosts the main() function

• It is created when the operating system starts our program and destroyed
at exit.

11/15/2016 Lectures on Modern Scientific Programming 2016 21

Threads in C++

The thread executing the current function at hand can be managed by
the following functions in the std::this_thread namespace:

• std::yield
• allow other threads to be scheduled first

• std::sleep_for, std::sleep_until
• suspend current thread for a given time or until a specific time point

11/15/2016 Lectures on Modern Scientific Programming 2016 22

Threads in C++

All other threads are represented in C++ as objects:

#include <thread>

std::thread t;

11/15/2016 Lectures on Modern Scientific Programming 2016 23

Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

11/15/2016 Lectures on Modern Scientific Programming 2016 24

Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

This is the function that we wish
to execute in a separate thread

11/15/2016 Lectures on Modern Scientific Programming 2016 25

Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

The constructor of thread takes
the function and starts it in a new
logical thread.

11/15/2016 Lectures on Modern Scientific Programming 2016 26

Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

Here the “main” thread
waits for t to finish.

11/15/2016 Lectures on Modern Scientific Programming 2016 27

Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>

#include <iostream>

int main()

{

auto task = [](int x){ std::cout << x << "\n"; };

std::thread t(task, 7);

t.join();

return 0;

}

11/15/2016 Lectures on Modern Scientific Programming 2016 28

Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>

#include <iostream>

int main()

{

auto task = [](int x){ std::cout << x << "\n"; };

std::thread t(task, 7);

t.join();

return 0;

}

11/15/2016 Lectures on Modern Scientific Programming 2016 29

Threads in C++

std::thread t(task, 7);

• This only works for functions, that do not return values...

• How to get back a result?

11/15/2016 Lectures on Modern Scientific Programming 2016 30

Promises and Futures in C++

#include <future>

std::promise<T> promise;

std::future<T> future = promise.get_future();

• The promise – future pair represents a one-time asynchronous
communication channel:

• The thread that has a value can set the promise once

• Another thread that has a future linked to the promise can wait for
the value to become available and extract it.

11/15/2016 Lectures on Modern Scientific Programming 2016 31

Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21);

std::cout << "Result: " << future.get() << "\n";

t.join();

}

11/15/2016 Lectures on Modern Scientific Programming 2016 32

Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21);

std::cout << "Result: " << future.get() << "\n";

t.join();

}

Create a promise-future
linked pair, that will
transfer an int.

11/15/2016 Lectures on Modern Scientific Programming 2016 33

Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21);

std::cout << "Result: " << future.get() << "\n";

t.join();

}

Create a function that
will take the promise and
sets it

11/15/2016 Lectures on Modern Scientific Programming 2016 34

Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21);

std::cout << "Result: " << future.get() << "\n";

t.join();

}
Start the thread and pass
on the promise

11/15/2016 Lectures on Modern Scientific Programming 2016 35

Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21);

std::cout << "Result: " << future.get() << "\n";

t.join();

} The main thread will wait here, until the future is
set, and .get() extracts the value (42)

11/15/2016 Lectures on Modern Scientific Programming 2016 36

std::async

Sometimes we just need a function returning a value,
and we don’t want to mess with starting the thread and linking the
promise...

std::async solves precisely this problem!

11/15/2016 Lectures on Modern Scientific Programming 2016 37

std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async(std::launch::async, f, 21);

std::cout << "Result: " << future.get() << "\n";

}

11/15/2016 Lectures on Modern Scientific Programming 2016 38

std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async(std::launch::async, f, 21);

std::cout << "Result: " << future.get() << "\n";

}

Starts function in a new thread,
returns a future that will hold the result.

11/15/2016 Lectures on Modern Scientific Programming 2016 39

std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async(std::launch::async, f, 21);

std::cout << "Result: " << future.get() << "\n";

}
“main” thread waits here for the result
to become available.

11/15/2016 Lectures on Modern Scientific Programming 2016 40

std::async

Rule of the thumb:

• Most of the time all you need is an async. Start the task, get back result.

• If you want intermediate one-time communication and synchronization
between two threads one choice is to use promise-future pairs.

11/15/2016 Lectures on Modern Scientific Programming 2016 41

Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};

11/15/2016 Lectures on Modern Scientific Programming 2016 42

Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};

C++11 fancy: digit separators,
does not change the number
just helps reading

11/15/2016 Lectures on Modern Scientific Programming 2016 43

Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};

Helper: takes two iterators
and averages the numbers
between them.

11/15/2016 Lectures on Modern Scientific Programming 2016 44

Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);

11/15/2016 Lectures on Modern Scientific Programming 2016 45

Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);

Returns the number of threads that can run in parallel
(usually number of logical cores)

11/15/2016 Lectures on Modern Scientific Programming 2016 46

Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);

We can simply create a vector of futures

11/15/2016 Lectures on Modern Scientific Programming 2016 47

Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k)

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async(std::launch::async,

averager, it0, it1);

}

11/15/2016 Lectures on Modern Scientific Programming 2016 48

Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k)

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async(std::launch::async,

averager, it0, it1);

}

Here we divide the whole
range into ‘step’ sized chunks

11/15/2016 Lectures on Modern Scientific Programming 2016 49

Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k)

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async(std::launch::async,

averager, it0, it1);

} And start the thread, store the future...

11/15/2016 Lectures on Modern Scientific Programming 2016 50

Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
});

11/15/2016 Lectures on Modern Scientific Programming 2016 51

Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
});

Iterate over the futures of the threads

11/15/2016 Lectures on Modern Scientific Programming 2016 52

Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
});

At each step, wait for the future and add
the thread’s result to the accumulator.

11/15/2016 Lectures on Modern Scientific Programming 2016 53

Example: large vector average

And the final result is:

std::cout << "Average is: "

<< result / (double)n << "\n";

(where n was the number of threads)

11/15/2016 Lectures on Modern Scientific Programming 2016 54

Example: large vector average

Notes:

• When in C++17 parallel algorithms become available, you don’t need to write
such constructs anymore (at least in simple cases covered by transform and reduce).

• If you need to write it anyway, you can always write the range division once,
and parametrize over the task.
This becomes very useful if you need overlapping ranges for some reason.

• The optimal number of thread may not be simply
std::thread::hardware_concurrency(). Experiment with less and more.

11/15/2016 Lectures on Modern Scientific Programming 2016 55

Now comes the messy part...

11/15/2016 Lectures on Modern Scientific Programming 2016 56

Sharing and mutation

There are two basic aspects of data in relation to threads:

• Sharing

• Access type

11/15/2016 Lectures on Modern Scientific Programming 2016 57

Sharing and mutation

There are two basic aspects of data in relation to threads:

• Sharing:
• More than a single thread have access to the same data, resource, ...

• Access type:
• A resource can be read (used) and written (modified, mutated)

11/15/2016 Lectures on Modern Scientific Programming 2016 58

Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable

11/15/2016 Lectures on Modern Scientific Programming 2016 59

Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable

11/15/2016 Lectures on Modern Scientific Programming 2016 60

Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable

11/15/2016 Lectures on Modern Scientific Programming 2016 61

Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable !!!
11/15/2016 Lectures on Modern Scientific Programming 2016 62

Sharing and mutation

• Shared mutable state is the root of all evil!

• If two or more threads would like to modify the same shared resource
we are dealing with a race condition.

• Specifically data writes occurring under a race condition can produce
wrong results or corrupted data.

11/15/2016 Lectures on Modern Scientific Programming 2016 63

Sharing and mutation

• Shared mutable state is the root of all evil!

Moreover!

• Since thread execution is essentially random, race conditions are
extremely hard to reproduce or debug!

11/15/2016 Lectures on Modern Scientific Programming 2016 64

Race conditions

Some illustrations of the consequences:

• Therac-25 was a linear accelerator
to deliver x-rays and electron beams
for cancer treatment.

• This 3rd generation device was the first
to have full computer control

11/15/2016 Lectures on Modern Scientific Programming 2016 65

Race conditions

Some illustrations of the consequences:

• Between 1985-87 multiple patients
were overdosed because of a race
condition in the design of the driver
logic.

11/15/2016 Lectures on Modern Scientific Programming 2016 66

Race conditions

Some illustrations of the consequences:

• In 2003 a large blackout affecting 55
million people in Canada and North US
happened.

• The crew of the control room did not
became aware of the problem because
of a race condition prevented alarms.

11/15/2016 Lectures on Modern Scientific Programming 2016 67

Avoiding race conditions

There are multiple ways of avoiding such cases:

• Use no shared mutable state!

• Use synchronization and concurrency control primitives...

11/15/2016 Lectures on Modern Scientific Programming 2016 68

Synchronization primitives in C++

In C++11 the following primitives were standardized:

• Mutexes

• Locks

• Condition variables

11/15/2016 Lectures on Modern Scientific Programming 2016 69

Mutexes

Mutex stands for “mutual exclusion”:

• Protects shared data from being accessed by more than 1 thread at a
time.

Thread 1

Thread 2

Mutex Resource

Lock

Cannot
lock!

11/15/2016 Lectures on Modern Scientific Programming 2016 70

Mutexes

Types of mutexes available since C++11:

• std::mutex two operations: can be locked and unlocked

• std::timed_mutex can keep trying to lock for or until some time

• std::recursive_mutex can be locked multiple times, unlock need to be
repeated the same number of times.

• std::recursive_timed_mutex combination of the above two

11/15/2016 Lectures on Modern Scientific Programming 2016 71

Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended:

• std::lock_guard< >

• std::unique_lock< >

11/15/2016 Lectures on Modern Scientific Programming 2016 72

Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended:

• std::lock_guard< >

• std::unique_lock< >

The template parameter is any
mutex from the previous list.

11/15/2016 Lectures on Modern Scientific Programming 2016 73

Mutexes and locks

std::lock_guard< > is a RAII driven helper:

• It’s constructor locks,

• it’s destructor unlocks.

Typical usage is in a scope:

std::mutex m;

{ //some scope, like a function body

std::lock_guard<std::mutex> lock(m);

//use the shared resource

} //at scope end the mutex is automatically unlocked

11/15/2016 Lectures on Modern Scientific Programming 2016 74

http://en.cppreference.com/w/cpp/language/raii

Mutexes and locks

Example: safely resizing a shared vector

std::mutex mutex;

std::vector<int> data;

{

std::lock_guard<std::mutex> guard(mutex);

data.resize(100);

}

11/15/2016 Lectures on Modern Scientific Programming 2016 75

Mutexes and locks

std::unique_lock< > is a mutex wrapper, that is

• movable and assignable

• RAII style as lock_guard

• But has the same interface as a mutex: can be locked and unlocked

11/15/2016 Lectures on Modern Scientific Programming 2016 76

Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to
lock different mutexes in a different order:

Thread 1

Thread 2

Mutex 1 Resource 1

Locked by 1

Mutex 2 Resource 2
Locked by 2

11/15/2016 Lectures on Modern Scientific Programming 2016 77

Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to
lock different mutexes in a different order:

Thread 1

Thread 2

Mutex 1 Resource 1

Locked by 1

Mutex 2 Resource 2
Locked by 2

11/15/2016 Lectures on Modern Scientific Programming 2016 78

Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to
implement them, std::lock knows them!

11/15/2016 Lectures on Modern Scientific Programming 2016 79

Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std::lock knows them!

std::mutex m1, m2;

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

}

11/15/2016 Lectures on Modern Scientific Programming 2016 80

Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std::lock knows them!

std::mutex m1, m2;

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

}

Mark constructors not to lock yet!

11/15/2016 Lectures on Modern Scientific Programming 2016 81

Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std::lock knows them!

std::mutex m1, m2;

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

} Safely lock multiple lockables,
avoiding deadlock

11/15/2016 Lectures on Modern Scientific Programming 2016 82

Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them,
std::lock knows them!

std::mutex m1, m2;

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

} Unlock happens automatically at
the scope end

11/15/2016 Lectures on Modern Scientific Programming 2016 83

More primitives

In C++ 14 and 17 the following additional primitives were introduced:

std::shared_mutex

std::shared_timed_mutex

std::shared_lock< >

Shared means that there are two lock states: shared and exclusive

• Multiple threads can take a shared lock (eg.: multiple read access)

• Only 1 thread can take an exclusive lock (eg.: write access)

• All shared locks must unlock before an exclusive lock can take place!

11/15/2016 Lectures on Modern Scientific Programming 2016 84

Conditional variables

std::condition_variable is grouping together mutual exclusion
and wait-for-modification functionality:

Modifying thread need to Waiting threads need to

1.: Acquire a mutex 1.: Lock on the mutex

2.: Modify the shared resource 2.: Wait on the lock with the cond. var.

3.: Release the mutex and notify the
others

3.: When woken up, they have the mutex
acquired

11/15/2016 Lectures on Modern Scientific Programming 2016 85

Conditional variables

std::condition_variable is grouping together mutual exclusion
and wait-for-modification functionality:

std::condition_variable cv;

std::mutex m;

//Writing thread:
{

std::unique_lock<std::mutex> lock(m);
//modify resource
cv.notify_all();

}

//Reading threads:
{

std::unique_lock<std::mutex> lock(m);
cv.wait(lock);
//use resource

}

11/15/2016 Lectures on Modern Scientific Programming 2016 86

Conditional variables

The wakeup is guaranteed to affect only those threads that started
waiting before the notification was signaled.

However: it is not guaranteed that a wake-up is always preceded by a
notification! This is called spurious wake-up.
Reasons for these root deep in OS kernel programming (link).

11/15/2016 Lectures on Modern Scientific Programming 2016 87

http://blog.vladimirprus.com/2005/07/spurious-wakeups.html

Spurious wake-ups

To ignore spurious wake-ups, it is recommended to check whether a
modification took place. This is provided by the wait overloads that take a
predicate:

template< class Predicate >

void wait(std::unique_lock<std::mutex>& lock,

Predicate pred)
{

while (!pred())

{

wait(lock);

}

}

11/15/2016 Lectures on Modern Scientific Programming 2016 88

Atomics

An atomic operation is a simple operation that cannot be interrupted
by an other thread.

• Atomics are for very simple types and very simple operations

• They are provided by hardware

• They are the cheapest way to protect data from races

11/15/2016 Lectures on Modern Scientific Programming 2016 89

Atomics

Since C++11 we have std::atomic<T>

The template is defined for any type, but only simple types are using
atomics directly, more complex ones use locks under the hood.

You can query if it is lock-free or not.

11/15/2016 Lectures on Modern Scientific Programming 2016 90

http://en.cppreference.com/w/cpp/atomic/atomic_is_lock_free

Atomics

The following operations are provided on std::atomic<T>

• Load and store

• Exchange, compare-and-exchange

• Add, subtract

• Logical AND, OR, XOR

11/15/2016 Lectures on Modern Scientific Programming 2016 91

Atomics

The following operations are provided on std::atomic<T>

• Load and store

• Exchange, compare-and-exchange

• Add, subtract

• Logical AND, OR, XOR
These are available as operators too!

11/15/2016 Lectures on Modern Scientific Programming 2016 92

Atomics

Unfortunately, an std::atomic<T> is not copy able and not
assignable!

This means, you cannot create an std::vector<std::atomic<T>>!

You can however, work around...

11/15/2016 Lectures on Modern Scientific Programming 2016 93

Atomics

template <typename T>

struct atomic_wrapper

{

std::atomic<T> data;

atomic_wrapper():data(){}

atomic_wrapper(atomic_wrapper const& copy) :

data(copy.data.load()){}

atomic_wrapper& operator=(atomic_wrapper const& copy)

{

data.store(copy.data.load());

return *this;

}

};

11/15/2016 Lectures on Modern Scientific Programming 2016 94

Atomics

template <typename T>

struct atomic_wrapper

{

std::atomic<T> data;

atomic_wrapper():data(){}

atomic_wrapper(atomic_wrapper const& copy) :

data(copy.data.load()){}

atomic_wrapper& operator=(atomic_wrapper const& copy)

{

data.store(copy.data.load());

return *this;

}

}; Atomic operations

11/15/2016 Lectures on Modern Scientific Programming 2016 95

Atomics

Now you can create a vector, since atomic_wrapper is copy able.

std::vector<std::atomic_wrapper<T>> v;

11/15/2016 Lectures on Modern Scientific Programming 2016 96

Atomics example

Typical use case: multi threaded histogramming

Case:

• 10M data points

• 4 threads

• 30 bins

Result:

• Without atomics ~3M hits are lost due to race conditions, total time is 470 ms

• With atomics, the results are correct, total time is 1070 ms

11/15/2016 Lectures on Modern Scientific Programming 2016 97

Outlook to C++17

• What to expect from the new standard

11/15/2016 Lectures on Modern Scientific Programming 2016 98

Outlook to C++17

• Parallelized forms of std algorithms:

std::transform(policy, it1, it2, it3, f);

Policies:

• seq – sequential (normal, as now) execution

• par – parallel execution in multiple threads

• par_vec – vectorized parallel execution
(loads and evaluations might be interleaved)

11/15/2016 Lectures on Modern Scientific Programming 2016 99

Outlook to C++17

• Continuation form in std::future:

You can chain functions with this:

int x = 2;

auto future = std::async(std::launch::async,

[](auto y){ return y+1; }, x);

auto future2 = future.then([](auto y){ return y*10; });

11/15/2016 Lectures on Modern Scientific Programming 2016 100

http://en.cppreference.com/w/cpp/experimental/future/then

Outlook to C++17

• Merging of std::futures

You can merge and wait for multiple futures:

auto final_future1 = std::when_all(future1, future2, ...);

auto final_future2 = std::when_any(future1, future2, ...);

11/15/2016 Lectures on Modern Scientific Programming 2016 101

http://en.cppreference.com/w/cpp/experimental/when_all

Outlook to C++17

• New synchronization primitives:

• std::latch
• implements a count-down barrier: a given number of threads can run into and get

blocked. All threads released when the number is reached. Single use!

• std::barrier
• Similar to latch, but reusable

• Std::flex_barrier
• Similar to barrier, but the user can specify an arbitrary function to execute when the

specified number of threads hit the barrier.

11/15/2016 Lectures on Modern Scientific Programming 2016 102

Outlook to C++17

• std::atomic_shared_ptr<T>:

• Merges the merits of std::shared_pointer and std::atomic.

11/15/2016 Lectures on Modern Scientific Programming 2016 103

http://en.cppreference.com/w/cpp/experimental/atomic_shared_ptr

Summary

Parallel programming is not overly complicated if you have the right
primitives

• Most of the time std::async is good for you

• Finer control can be done with std::thread

• Inter thread communication possibilities

• Beware of shared mutable states!

• C++17 parallel algorithms will take even more burden off from the
developers

11/15/2016 Lectures on Modern Scientific Programming 2016 104

