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Outline

• This talk introduces the fundamental parallel programming constructs 
that became standardized with C++11

• So these constructs are now portable and easily accessible
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Why do we need parallelism?

Sources: 1., 2.
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Why do we need parallelism?

Sources: 1., 2.

What is going on?

11/15/2016 Lectures on Modern Scientific Programming 2016 5

http://lppm3.ru/files/school/lectures/LPpM3-2016-1-Lecture-Borrell.pdf
https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png


Why do we need parallelism?

• Before 2000’s computers become faster because the clock frequency 
increased every year.

• It hit a certain threshold because of cooling, so it converged to 
approximately 1-3 GHz.

• The only way to increase computing power is to parallelize...

• Additional transistors are used to duplicate execution units to run 
more and more tasks in parallel
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple bits inside one register

11/15/2016 Lectures on Modern Scientific Programming 2016 8



Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple instructions executing at 
the same time in the pipeline
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

The same instruction operates on 
multiple data at the same time
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Multiple threads are running at 
the same time, but they share in 
some way a common memory
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
Multiple processes are running on 
the same or different computers, 
no direct memory access
(just message passing)
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

Taken care by the processor and the compiler

In some edge cases you might want to tweak at the vector level
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
It is the programmer’s task
to write the parallel logic
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level
If you don’t use this, you are wasting 
resources, and your code will never be faster
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Levels of Parallelism

• There are multiple levels of parallelism available:

• Bit-level

• Instruction-level

• Vector-level

• Task/Device-level

• Process/Cluster-level

This talk deals with this level!
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Threads

• Thread is the logical unit of execution.

• It has a separate stack

• A state of it’s own

• It is scheduled by the operating system (CPUs) or by the hardware (GPUs)

• When it is executing it is associated to some hardware resource.
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Threads

• Todays computers 
manage hundreds 
or thousands of 
threads!

• On a handful of 
cores...

• How?
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Threads

• Threads have states:

• Executing

• Waiting

• Suspended

• ...etc

The trick is, that only this one is 
using the execution unit
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Threads

• Threads have states:

• Executing

• Waiting

• Suspended

• ...etc

These are put aside,
they aren’t executing
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Threads in C++

• There is always at least one thread in the program:

• The “main” thread, the one that hosts the main() function

• It is created when the operating system starts our program and destroyed 
at exit.
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Threads in C++

The thread executing the current function at hand can be managed by 
the following functions in the std::this_thread namespace:

• std::yield
• allow other threads to be scheduled first

• std::sleep_for, std::sleep_until
• suspend current thread for a given time or until a specific time point
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Threads in C++

All other threads are represented in C++ as objects:

#include <thread>

std::thread t;
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Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}
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Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

This is the function that we wish 
to execute in a separate thread
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Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

The constructor of thread takes 
the function and starts it in a new 
logical thread.
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Threads in C++

A simple example to start a thread:

#include <thread>

#include <iostream>

int main()

{

auto task = [](){ std::cout << "done.\n"; };

std::thread t(task);

t.join();

return 0;

}

Here the “main” thread 
waits for t to finish.
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Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>

#include <iostream>

int main()

{

auto task = [](int x){ std::cout << x << "\n"; };

std::thread t(task, 7);

t.join();

return 0;

}
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Threads in C++

A simple example to start a thread and pass some arguments to it:

#include <thread>

#include <iostream>

int main()

{

auto task = [](int x){ std::cout << x << "\n"; };

std::thread t(task, 7);

t.join();

return 0;

}
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Threads in C++

std::thread t(task, 7);

• This only works for functions, that do not return values...

• How to get back a result?
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Promises and Futures in C++

#include <future>

std::promise<T> promise;

std::future<T> future = promise.get_future();

• The promise – future pair represents a one-time asynchronous
communication channel:

• The thread that has a value can set the promise once

• Another thread that has a future linked to the promise can wait for 
the value to become available and extract it.
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Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21 );

std::cout << "Result: " << future.get() << "\n";

t.join();

}
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Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21 );

std::cout << "Result: " << future.get() << "\n";

t.join();

}

Create a promise-future 
linked pair, that will 
transfer an int.
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Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21 );

std::cout << "Result: " << future.get() << "\n";

t.join();

}

Create a function that 
will take the promise and 
sets it
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Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21 );

std::cout << "Result: " << future.get() << "\n";

t.join();

}
Start the thread and pass 
on the promise
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Promises and Futures in C++
#include <thread>

#include <future>

int main()

{

std::promise<int> promise;

std::future<int> future = promise.get_future();

auto f = [](std::promise<int> p_in, int x){ p_in.set_value(2*x); };

std::thread t(f, std::move(promise), 21 );

std::cout << "Result: " << future.get() << "\n";

t.join();

} The main thread will wait here, until the future is 
set, and .get() extracts the value (42)
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std::async

Sometimes we just need a function returning a value,
and we don’t want to mess with starting the thread and linking the 
promise...

std::async solves precisely this problem!
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std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async( std::launch::async, f, 21 );

std::cout << "Result: " << future.get() << "\n";

}
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std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async( std::launch::async, f, 21 );

std::cout << "Result: " << future.get() << "\n";

}

Starts function in a new thread,
returns a future that will hold the result.
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std::async

#include <future>

int main()

{

auto f = [](int x){ return 2*x; };

auto future = std::async( std::launch::async, f, 21 );

std::cout << "Result: " << future.get() << "\n";

}
“main” thread waits here for the result 
to become available.
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std::async

Rule of the thumb:

• Most of the time all you need is an async. Start the task, get back result.

• If you want intermediate one-time communication and synchronization
between two threads one choice is to use promise-future pairs.
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Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};
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Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};

C++11 fancy: digit separators, 
does not change the number 
just helps reading
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Example: large vector average

Task: average a large vector with multiple threads:

std::vector<double> vec(10'000'000);

auto averager = [](auto it0, auto it1)

{

auto sum = std::accumulate(it0, it1, 0.0);

return sum / std::distance(it0, it1);

};

Helper: takes two iterators 
and averages the numbers 
between them.
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Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);
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Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);

Returns the number of threads that can run in parallel 
(usually number of logical cores)
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Example: large vector average

auto n = std::thread::hardware_concurrency();

std::vector<std::future<double>> futures(n);

We can simply create a vector of futures
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Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k )

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async( std::launch::async,

averager, it0, it1 );

}
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Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k )

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async( std::launch::async,

averager, it0, it1 );

}

Here we divide the whole 
range into ‘step’ sized chunks
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Example: large vector average
Start the threads:

auto step = 1 + (int)vec.size() / n;

for(int k=0; k<n; ++k )

{

auto it0 = std::next(vec.begin(), k * step);

auto it1 = std::next(vec.begin(),

std::min((k+1) * step,(int)vec.size()));

futures[k] = std::async( std::launch::async,

averager, it0, it1 );

} And start the thread, store the future...
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Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
} );
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Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
} );

Iterate over the futures of the threads
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Example: large vector average

Collect the results:

auto partial_avg =

std::accumulate(futures.begin(),
futures.end(),
0.0,

[](double acc, std::future<double>& f)
{

return acc + f.get();
} );

At each step, wait for the future and add 
the thread’s result to the accumulator.
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Example: large vector average

And the final result is:

std::cout << "Average is: "

<< result / (double)n << "\n";

(where n was the number of threads)
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Example: large vector average

Notes:

• When in C++17 parallel algorithms become available, you don’t need to write 
such constructs anymore (at least in simple cases covered by transform and reduce).

• If you need to write it anyway, you can always write the range division once,
and parametrize over the task.
This becomes very useful if you need overlapping ranges for some reason.

• The optimal number of thread may not be simply
std::thread::hardware_concurrency(). Experiment with less and more.
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Now comes the messy part...

11/15/2016 Lectures on Modern Scientific Programming 2016 56



Sharing and mutation

There are two basic aspects of data in relation to threads:

• Sharing

• Access type
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Sharing and mutation

There are two basic aspects of data in relation to threads:

• Sharing:
• More than a single thread have access to the same data, resource, ...

• Access type:
• A resource can be read (used) and written (modified, mutated)
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Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable
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Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable
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Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable
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Sharing and mutation

There are two basic aspects of data in relation to threads:

Not shared Shared

Immutable

Mutable !!!
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Sharing and mutation

• Shared mutable state is the root of all evil!

• If two or more threads would like to modify the same shared resource 
we are dealing with a race condition.

• Specifically data writes occurring under a race condition can produce 
wrong results or corrupted data.
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Sharing and mutation

• Shared mutable state is the root of all evil!

Moreover!

• Since thread execution is essentially random, race conditions are 
extremely hard to reproduce or debug!

11/15/2016 Lectures on Modern Scientific Programming 2016 64



Race conditions

Some illustrations of the consequences:

• Therac-25 was a linear accelerator
to deliver x-rays and electron beams
for cancer treatment.

• This 3rd generation device was the first
to have full computer control
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Race conditions

Some illustrations of the consequences:

• Between 1985-87 multiple patients 
were overdosed because of a race 
condition in the design of the driver 
logic.
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Race conditions

Some illustrations of the consequences:

• In 2003 a large blackout affecting 55 
million people in Canada and North US 
happened.

• The crew of the control room did not 
became aware of the problem because 
of a race condition prevented alarms.
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Avoiding race conditions

There are multiple ways of avoiding such cases:

• Use no shared mutable state!

• Use synchronization and concurrency control primitives...
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Synchronization primitives in C++

In C++11 the following primitives were standardized:

• Mutexes

• Locks

• Condition variables
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Mutexes

Mutex stands for “mutual exclusion”:

• Protects shared data from being accessed by more than 1 thread at a 
time.

Thread 1

Thread 2

Mutex Resource

Lock

Cannot 
lock!
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Mutexes

Types of mutexes available since C++11:

• std::mutex two operations: can be locked and unlocked

• std::timed_mutex can keep trying to lock for or until some time

• std::recursive_mutex can be locked multiple times, unlock need to be 
repeated the same number of times.

• std::recursive_timed_mutex combination of the above two
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Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended:

• std::lock_guard< > 

• std::unique_lock< >
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Mutexes and locks

Mutexes are low-level primitives.

For a safer usage, locks are recommended:

• std::lock_guard< > 

• std::unique_lock< >

The template parameter is any 
mutex from the previous list.
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Mutexes and locks

std::lock_guard< > is a RAII driven helper:

• It’s constructor locks,

• it’s destructor unlocks.

Typical usage is in a scope:

std::mutex m;

{ //some scope, like a function body

std::lock_guard<std::mutex> lock(m);

//use the shared resource

} //at scope end the mutex is automatically unlocked
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Mutexes and locks

Example: safely resizing a shared vector

std::mutex mutex;

std::vector<int> data;

{

std::lock_guard<std::mutex> guard(mutex);

data.resize( 100 );

}
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Mutexes and locks

std::unique_lock< > is a mutex wrapper, that is

• movable and assignable

• RAII style as lock_guard

• But has the same interface as a mutex: can be locked and unlocked
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Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to 
lock different mutexes in a different order:

Thread 1

Thread 2

Mutex 1 Resource 1

Locked by 1

Mutex 2 Resource 2
Locked by 2
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Mutexes and deadlocks

When locking multiple mutexes a deadlock may occur if threads try to 
lock different mutexes in a different order:

Thread 1

Thread 2

Mutex 1 Resource 1

Locked by 1

Mutex 2 Resource 2
Locked by 2
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Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to 
implement them, std::lock knows them!
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Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them, 
std::lock knows them!

std::mutex m1, m2; 

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

}
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Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them, 
std::lock knows them!

std::mutex m1, m2; 

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

}

Mark constructors not to lock yet!
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Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them, 
std::lock knows them!

std::mutex m1, m2; 

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

} Safely lock multiple lockables,
avoiding deadlock
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Mutexes and deadlocks

There are deadlock avoiding algorithms, but you don’t have to implement them, 
std::lock knows them!

std::mutex m1, m2; 

{

std::unique_lock<std::mutex> lock1(m1, std::defer_lock);

std::unique_lock<std::mutex> lock2(m2, std::defer_lock);

std::lock(lock1, lock2);

//use resources

} Unlock happens automatically at 
the scope end
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More primitives

In C++ 14 and 17 the following additional primitives were introduced:

std::shared_mutex

std::shared_timed_mutex

std::shared_lock<   >

Shared means that there are two lock states: shared and exclusive

• Multiple threads can take a shared lock (eg.: multiple read access)

• Only 1 thread can take an exclusive lock (eg.: write access)

• All shared locks must unlock before an exclusive lock can take place!
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Conditional variables

std::condition_variable is grouping together mutual exclusion 
and wait-for-modification functionality:

Modifying thread need to Waiting threads need to

1.: Acquire a mutex 1.: Lock on the mutex

2.: Modify the shared resource 2.: Wait on the lock with the cond. var.

3.: Release the mutex and notify the 
others

3.: When woken up, they have the mutex
acquired
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Conditional variables

std::condition_variable is grouping together mutual exclusion 
and wait-for-modification functionality:

std::condition_variable cv;

std::mutex m;

//Writing thread:
{

std::unique_lock<std::mutex> lock(m);
//modify resource
cv.notify_all();

}

//Reading threads:
{

std::unique_lock<std::mutex> lock(m);
cv.wait(lock);
//use resource

}
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Conditional variables

The wakeup is guaranteed to affect only those threads that started 
waiting before the notification was signaled.

However: it is not guaranteed that a wake-up is always preceded by a 
notification! This is called spurious wake-up.
Reasons for these root deep in OS kernel programming (link).
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Spurious wake-ups

To ignore spurious wake-ups, it is recommended to check whether a 
modification took place. This is provided by the wait overloads that take a 
predicate:

template< class Predicate >

void wait( std::unique_lock<std::mutex>& lock,

Predicate pred )
{

while (!pred())

{

wait(lock);

}

}
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Atomics

An atomic operation is a simple operation that cannot be interrupted 
by an other thread.

• Atomics are for very simple types and very simple operations

• They are provided by hardware

• They are the cheapest way to protect data from races
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Atomics

Since C++11 we have std::atomic<T>

The template is defined for any type, but only simple types are using 
atomics directly, more complex ones use locks under the hood.

You can query if it is lock-free or not.
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Atomics

The following operations are provided on std::atomic<T>

• Load and store

• Exchange, compare-and-exchange

• Add, subtract

• Logical AND, OR, XOR
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Atomics

The following operations are provided on std::atomic<T>

• Load and store

• Exchange, compare-and-exchange

• Add, subtract

• Logical AND, OR, XOR
These are available as operators too!

11/15/2016 Lectures on Modern Scientific Programming 2016 92



Atomics

Unfortunately, an std::atomic<T> is not copy able and not 
assignable!

This means, you cannot create an std::vector<std::atomic<T>>!

You can however, work around...
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Atomics

template <typename T>

struct atomic_wrapper

{

std::atomic<T> data;

atomic_wrapper():data(){}

atomic_wrapper(atomic_wrapper const& copy) :

data(copy.data.load()){}

atomic_wrapper& operator=(atomic_wrapper const& copy)

{

data.store(copy.data.load());

return *this;

}

};
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Atomics

template <typename T>

struct atomic_wrapper

{

std::atomic<T> data;

atomic_wrapper():data(){}

atomic_wrapper(atomic_wrapper const& copy) :

data(copy.data.load()){}

atomic_wrapper& operator=(atomic_wrapper const& copy)

{

data.store(copy.data.load());

return *this;

}

}; Atomic operations
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Atomics

Now you can create a vector, since atomic_wrapper is copy able.

std::vector<std::atomic_wrapper<T>> v;
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Atomics example

Typical use case: multi threaded histogramming

Case:

• 10M data points

• 4 threads

• 30 bins

Result:

• Without atomics ~3M hits are lost due to race conditions, total time is 470 ms

• With atomics, the results are correct, total time is 1070 ms

11/15/2016 Lectures on Modern Scientific Programming 2016 97



Outlook to C++17

• What to expect from the new standard
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Outlook to C++17

• Parallelized forms of std algorithms:

std::transform( policy, it1, it2, it3, f );

Policies:

• seq – sequential (normal, as now) execution

• par – parallel execution in multiple threads

• par_vec – vectorized parallel execution
(loads and evaluations might be interleaved)

11/15/2016 Lectures on Modern Scientific Programming 2016 99



Outlook to C++17

• Continuation form in std::future:

You can chain functions with this:

int x = 2;

auto future = std::async( std::launch::async,

[](auto y){ return y+1; }, x );

auto future2 = future.then( [](auto y){ return y*10; } );
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Outlook to C++17

• Merging of std::futures

You can merge and wait for multiple futures:

auto final_future1 = std::when_all(future1, future2, ...);

auto final_future2 = std::when_any(future1, future2, ...);

11/15/2016 Lectures on Modern Scientific Programming 2016 101

http://en.cppreference.com/w/cpp/experimental/when_all


Outlook to C++17

• New synchronization primitives:

• std::latch
• implements a count-down barrier: a given number of threads can run into and get 

blocked. All threads released when the number is reached. Single use!

• std::barrier
• Similar to latch, but reusable

• Std::flex_barrier
• Similar to barrier, but the user can specify an arbitrary function to execute when the 

specified number of threads hit the barrier.
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Outlook to C++17

• std::atomic_shared_ptr<T>:

• Merges the merits of std::shared_pointer and std::atomic.
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Summary

Parallel programming is not overly complicated if you have the right 
primitives

• Most of the time std::async is good for you

• Finer control can be done with std::thread

• Inter thread communication possibilities

• Beware of shared mutable states!

• C++17 parallel algorithms will take even more burden off from the 
developers
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