
All colors of PhysicsAll colors of PhysicsAll colors of Physics

Gentle introduction to C++

Why use C++?

Máté Ferenc Nagy-Egri

Wigner GPU Lab

Table of Contents

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 2

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 3

Important disclaimer

• The beginning of this talk will try to
clarify:

– Every language under the aegis of Turing
has it’s place

– Not all languages were created created
equal (some are indeed more equal)

Important Disclaimer

• We are evangelists of a given language, although:

– We are aware it is not the „best” existing one

– We are keen on educating ourselves in other langs. we see fit

• Although our tone might seem hostile at times:

– It is ONLY an instrument of conveying emphasis

– We strive on remaining humble and understanding to the
background of newcomers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 4

FEAR OF THE UNKNOWN

„Fear leads to anger, anger leads to hate, and hate leads to… sufffferiiiiing.” –
Master Yoda

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 5

Hierarchy of disagreement

• Refuting the Central Point
Explicitly

refutes the central point

• RefutationFinds the mistake and explains
why it’s mistaken using quotes

• CounterargumentContradicts and then backs it up with
reasoning and/or supporting evidence

• ContradictionStates the opposite case with little to no
reasoning

• Responding to ToneCriticizes the tone of the writing without addressing the
substance of the argument

• Ad-HominemAttacks the characteristics or authority of the write without
addressing the substance of the argument

• Name-callingSounds something like, „you’re an idiot”

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 6

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 7

A B C D

E F G H

I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 8

• Let’s create a „power spectrum” of all the languages

– The sorting criteria is the „expressivity” of the language

• For a moment let’s assume such a spectrum exists

A B C D F G H I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 9

• Let’s create a „power spectrum” of all the languages

– The sorting criteria is the expressivity of the language

• For a moment let’s assume such a spectrum exists

• Choose a programmer adept in an arbitrary (non-
extremal) language

– Let’s call this language „blub”

A B C D F G H I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 10

• Our theoretical „blub” programmer can verify the
spectrum beneath his language of choice

– He can tell B is better than A, because of features X & Y which
are present in B, but are absent in A

A B C D F G H I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 11

• Our theoretical „blub” programmer can verify the
spectrum beneath his language of choice

– He can tell B is better than A, because of features X & Y which
are present in B, but are absent in A

• However, when looking upward in the spectrum, he/she
only sees a horde of weird languages

– Why does feature Z & Q exist, when I can solve all problems
without them?

A B C D F G H I J K L

Fear of the unknown

• We can all agree, that writing scientific code in assembler
is no longer feasible

• Higher level languages (expressivity) came into existance
for a reason

• Programming languages are evolving!

– Fenomena ranging from „now we can do better” all the way to
„seemed like a good idea at the time” all exist

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 12

Fear of the unknown

• Cobol, Fortran, C

– Close to metal languages

– Hide hardware details

• uniform address space

• weak type safety

• I/O features (operating systems)

– Imperative in nature (just like punch cards and assembler)

– Compilers optimize program code to match machine
preferences

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 13

Fear of the unknown

• C++, D, Go, Rust, C#, Java, etc.
– „Close to metal” languages

– Ability to create abstractions
• Hide implementation details

– Languages provide varying level of access to low-level features

• Provide runtime safety
– Resource management (RAII, garbage collection)

– Race conditions (parallel programming errors)

– Turn run-time errors into compile-time errors (!)

• Expressivity
– Inheritance and object orientation („is a” versus „has a” relationship)

– Generic programming (code deduplication versus abstraction)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 14

Fear of the unknown

• OCaml, Haskell, F#, Julia, Idris

– Academic languages

– Applied mathematics

• Expressivity at the forefront

– Sacrifice runtime performance for a more flexible/expressive type system

– Cleaner foundations (less industry and more academy)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 15

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 16

A B C D F G H I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 17

asm B C D F G H I J K L

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 18

asm B C D F G H I J K Idris

The „blub” paradox

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 19

asm B C D F C++ H I J K Idris

REINTERPRET_CAST<CPP>(C)

How to make the transition?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 20

• People tend to forget: C++ is source
compatible with C

• You don’t have to use every fancy
feature

– Tired of string manipulation? Use
std::string

– Want a stateful function? Use a functor

– Support float and double effortlessly? Sure

• Don’t use what you don’t want

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 21

And really

Source compatibility

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 22

// Standard C includes
#include <stdlib.h> // EXIT_SUCCESS
#include <stdio.h> // printf

int main(int argc, const char* argv[], const char* envp[])
{

int CRT_err = printf("Hello World!");

if (CRT_err < 0)
exit(EXIT_FAILURE);

return EXIT_SUCCESS;
}

PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> cl.exe /nologo .\src\Minimal.c
Minimal.c
PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> .\Minimal.exe
Hello World!

Source compatibility

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 23

// Standard C includes
#include <stdlib.h> // EXIT_SUCCESS
#include <stdio.h> // printf

int main(int argc, const char* argv[], const char* envp[])
{

int CRT_err = printf("Hello World!");

if (CRT_err < 0)
exit(EXIT_FAILURE);

return EXIT_SUCCESS;
}

PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> cl.exe /nologo /TP .\src\Minimal.c
Minimal.c
PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> .\Minimal.exe
Hello World!

PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> cl.exe /help
Microsoft (R) C/C++ Optimizing Compiler Version 19.00.24215.1 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

C/C++ COMPILER OPTIONS
...
/TP compile all files as .cpp
...

Source compatibility

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 24

// Standard C includes
#include <stdlib.h> // EXIT_SUCCESS
#include <stdio.h> // printf

int main(int argc, const char* argv[], const char* envp[])
{

int CRT_err = printf("Hello World!");

if (CRT_err < 0)
exit(EXIT_FAILURE);

return EXIT_SUCCESS;
}

mnagy@MATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$ gcc src/Minimal.c
mnagy@MATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$./a.out
Hello World!

Source compatibility

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 25

// Standard C includes
#include <stdlib.h> // EXIT_SUCCESS
#include <stdio.h> // printf

int main(int argc, const char* argv[], const char* envp[])
{

int CRT_err = printf("Hello World!");

if (CRT_err < 0)
exit(EXIT_FAILURE);

return EXIT_SUCCESS;
}

mnagy@MATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$ g++ src/Minimal.c
mnagy@MATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$./a.out
Hello World!

Source compatibility

• Modulo differences, most notably

– Variable Length Arrays (on stack) are not supported in C++

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 26

int a[5]; // OK in C, OK in C++

size_t length = 5;

int* b = (int*)calloc(length, sizeof(int)); // OK in C, OK in C++

int c[length]; // OK in C, ERROR in C++

//

// infact, OK in C99, optional in C11

• Some other minor differences, but mostly the same

And now let’s get our hands dirty

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 27

Just how deep the rabbit hole is

Namespaces

• Most C APIs prefix their functions, so that they do not
collide with similar functionality of other APIs

– gsl_integrate_cquad(...)

– glBegin()

– clCreateContext(...)

– etc.

• Function names clearly indicate where features originate
from, but is sometimes tedious to write out

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 28

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 29

Namespaces

// Build program file

cl_program build_program_source(cl_context context, const char* source)

{

...

result = clCreateProgramWithSource(context, 1, &source, &length, &CL_err);

CL_err = clGetContextInfo(context, CL_CONTEXT_NUM_DEVICES, sizeof(cl_uint), &numDevices, NULL);

devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id));

CL_err = clGetContextInfo(context, CL_CONTEXT_DEVICES, numDevices * sizeof(cl_device_id), devices,

NULL);

// Warnings will be treated like errors, this is useful for debug

char build_params[] = { "-Werror -cl-std=CL1.0" };

CL_err = clBuildProgram(result, numDevices, devices, build_params, NULL, NULL);

...

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 30

Namespaces

// Build program file

cl_program build_program_source(cl_context context, const char* source)

{

...

result = clCreateProgramWithSource(context, 1, &source, &length, &CL_err);

CL_err = clGetContextInfo(context, CL_CONTEXT_NUM_DEVICES, sizeof(cl_uint), &numDevices, NULL);

devices = (cl_device_id*)malloc(numDevices * sizeof(cl_device_id));

CL_err = clGetContextInfo(context, CL_CONTEXT_DEVICES, numDevices * sizeof(cl_device_id), devices,

NULL);

// Warnings will be treated like errors, this is useful for debug

char build_params[] = { "-Werror -cl-std=CL1.0" };

CL_err = clBuildProgram(result, numDevices, devices, build_params, NULL, NULL);

...

}

Namespaces

• C++98 introduces the notion of namespaces, which can
be traversed by the operator ::

• Functions, types and global variables may be placed in
namespaces to separate from other APIs

• using namespace directives may be used to omit
namespace names.

• These directives are scoped

– In global scope they span the entire translation unit

– In function/plain scope they are restricted to that scope only

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 31

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 32

Namespaces

int main()

{

...

cl::Buffer buf_x(context, x.begin(), x.end(), true);

cl::Buffer buf_y(context, x.begin(), x.end(), false);

cl::CommandQueue queue(context,

devices.at(0),

cl::QueueProperties::OutOfOrder | cl::QueueProperties::Profiling);

cl::Event kernel_event;

kernel_event = vecAdd(cl::EnqueueArgs(queue, cl::NDRange(chainlength)), a, buf_x, buf_y);

kernel_event.wait();

...

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 33

Namespaces

int main()

{

...

cl::Buffer buf_x(context, x.begin(), x.end(), true);

cl::Buffer buf_y(context, x.begin(), x.end(), false);

cl::CommandQueue queue(context,

devices.at(0),

cl::QueueProperties::OutOfOrder | cl::QueueProperties::Profiling);

cl::Event kernel_event;

kernel_event = vecAdd(cl::EnqueueArgs(queue, cl::NDRange(chainlength)), a, buf_x, buf_y);

kernel_event.wait();

...

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 34

Namespaces

int main()

{

...

using namespace cl;

Buffer buf_x(context, x.begin(), x.end(), true);

Buffer buf_y(context, x.begin(), x.end(), false);

CommandQueue queue(context,

devices.at(0),

QueueProperties::OutOfOrder | QueueProperties::Profiling);

Event kernel_event;

kernel_event = vecAdd(EnqueueArgs(queue, NDRange(chainlength)), a, buf_x, buf_y);

kernel_event.wait();

...

}

Function overloading

• In C every function has to have a unique name
• Because of this, people end up with functions such as:

– abs
– labs
– llabs

• These all essentially do the same thing, but have a different
name

• This is not only tedious, but significantly hinders generic
programming

• The standard library in cases provide type-generic versions
of such functions #include <tgmath.h> but the macro magic
inside, is not for the faint of heart

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 35

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 36

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

long negative = -5;
unsigned long positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 37

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

long negative = -5;
unsigned long positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Warmbed of copy-paste
errors

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 38

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

typedef long integral; typedef unsigned long natural;

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Try adding some genericity to the code.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 39

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

What happens if I change the types?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 40

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

What happens if I change the types?

IT COMPILES!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 41

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Widening conversion (the better case)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 42

Function overloading

// Standard C includes
#include <stdlib.h> // abs, labs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int c_abs(int in) { return (unsigned int)abs(in); }
unsigned long c_labs(long in) { return (unsigned long)labs(in); }
unsigned long long c_llabs(long long in) { return (unsigned long long)llabs(in); }

int main()
{

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

We possibly print garbage values to console, %ld might read more than %d

Function overloading

• C++98 allows to „overload” the name of the function to
behave differently, depending on the types of its
arguments

• Because of this, one can define functions such as:
– int abs(int)

– long abs(long)

– long long abs(long long)

• The internals of these functions might behave differently
(and it does) based on input

• The standard library provides this function as std::abs

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 43

http://en.cppreference.com/w/cpp/numeric/math/abs

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 44

Function overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 45

Function overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Do not wiki search std, because here it does not refer to sexually
transferable disease, but it denotes the namespace of the C++
STanDard library

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 46

Function overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Notice how the function names are identical

Therefor the call site need not be changed when the typedefs are changed

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 47

Function overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

However, this part still did not follow the change of typedefs

Operator overloading

• C++98 feature, that allows overloading not just function
names, but also the built-in operators to behave
differently for both built-in and non-built-in types

• Because writing things like

–

– would be weird, operators do not reside in namespaces

• Most operators can be overloaded

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 48

custom::my_struct a, b;
custom::my_struct c = a custom::+ b;

http://en.cppreference.com/w/cpp/language/operators

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 49

Operator overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <stdio.h> // printf

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

printf("Absolute value of %ld is %lu\n", negative, positive);

return EXIT_SUCCESS;
}

Recall this part was one of our concerns

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 50

Operator overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <iostream> // std::cout

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

std::cout << "Absolute value of " << negative << " is " << positive;

return EXIT_SUCCESS;
}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 51

Operator overloading

// Standard C/C++ includes
#include <cmath> // std::abs
#include <iostream> // std::cout

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

std::cout << "Absolute value of " << negative << " is " << positive << std::endl;

return EXIT_SUCCESS;
}

Overloading the binary left-shift operator, we can „push” things into
cout, the console out entity. operator<< is by default overloaded for
std::ostream (the type of std::cout) and all built-in types.

Function template

• What is a function template?

– It is NOT a function

– It is a recipe to create a function

• What is a template function?

– It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 52

template <typename T> T sq(const T t) { return t*t; };

int main()
{

int a = sq(5);
}

Function template

• What is a function template?

– It is NOT a function

– It is a recipe to create a function

• What is a template function?

– It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 53

template <typename T> T sq(const T t) { return t*t; };

int main()
{

int a = sq(5);
}

This tells us we’re introducing a template

Function template

• What is a function template?

– It is NOT a function

– It is a recipe to create a function

• What is a template function?

– It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 54

template <typename T> T sq(const T t) { return t*t; };

int main()
{

int a = sq(5);
}

Inside the angle brackets, we have a comma separated list of template parameters. In this case,
it happens to be the name of a type. We can use this name throughout the function signature
and the implementation.

Function template

• What is a function template?

– It is NOT a function

– It is a recipe to create a function

• What is a template function?

– It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 55

template <typename T> T sq(const T t) { return t*t; };

int main()
{

int a = sq(5);
}

When the compiler reaches finishes compiling this part of the code, nothing is done
yet. This is not a function, just a recipe to create one.

Function template

• What is a function template?

– It is NOT a function

– It is a recipe to create a function

• What is a template function?

– It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 56

template <typename T> T sq(const T t) { return t*t; };

int main()
{

int a = sq(5);
}

When it reaches the call site, this is when the function is instantiated, meaning that
a declaration/definition is generated with the type provided.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 57

Function template

// Standard C/C++ includes
#include <cmath> // std::abs
#include <iostream> // std::cout

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

std::cout << "Absolute value of " << negative << " is " << positive << std::endl;

return EXIT_SUCCESS;
}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 58

Function template

// Standard C/C++ includes
#include <cmath> // std::abs
#include <iostream> // std::cout

typedef int integral; typedef unsigned int natural;

unsigned int cpp_abs(int in) { return (unsigned int)std::abs(in); }
unsigned long cpp_abs(long in) { return (unsigned long)std::abs(in); }
unsigned long long cpp_abs(long long in) { return (unsigned long long)std::abs(in); }

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

std::cout << "Absolute value of " << negative << " is " << positive << std::endl;

return EXIT_SUCCESS;
}

This is not just tedious and repetitive, but also error prone. The
names of the functions all match, the implementations due to
overloading of the wrapped function also match…

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 59

Function template

// Standard C/C++ includes
#include <cmath> // std::abs
#include <iostream> // std::cout

typedef int integral; typedef unsigned int natural;

template <typename T> T cpp_abs(const T in) { return (T)std::abs(in); };

int main()
{

integral negative = -5;
natural positive = cpp_abs(negative);

std::cout << "Absolute value of " << negative << " is " << positive << std::endl;

return EXIT_SUCCESS;
}

Variable template

• What is a variable template?

– It NOT an instance a variable

– It is a recipe to create a variable

• What is a template variable?

– It is variable, that was generated from a template

– Just like other templates, can only be declared at global scope

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 60

template <typename T> static const T pi = (const T)3.1415926535897932384626433832795;

int main()
{

float diameter = 2*r*pi<float>;
}

Class template

• What is a class template?

– It is NOT a type

– It is a recipe to generate a type

• What is a template class?

– It is a complete type, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 61

template <typename T> struct my_array { T* data; size_t size; }

typedef float real;

int main()
{

size_t length = 5;
my_array<real> arr = {(real*)malloc(length * sizeof(real)), length};

}

Further on templates

• If you want to know more of templates and how they
work, I suggest watching the following tutorial

– Channel9: Stephan T. Lavavej: Core C++

– CppCon 2016: Arthur o’Dwyer, Template Normal Programming

– CppCon 2015: Walter E. Brown, Template Metaprogramming
Compendium

• When looking for guides/tutorials on templates, avoid
anything with „meta” in it’s content

– Templates != metaprorgramming

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 62

References

• Without any decoration, both C and C++ take function
parameters „by value”
– Incurs a copy of the object

– Modifying the object results in modifying the copy, not the
original. This is vexing when
• One does not wish to pay the extra CPU cycles it takes to make a copy

• One wishes to write a function that operates on a parameter

• One wants to emulate multiple return values (C++17 might address
this)

• Taking a values pointer in contrast is a solution to all of
the above

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 63

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 64

References

// Standard C includes

#include <stdlib.h> // malloc, calloc

int main()

{

size_t length = 8;

struct arr init = { (double*)malloc(length * sizeof(double)) , length };

struct arr uninit = { (double*)calloc(length, sizeof(double)) , length };

copy(&init, &uninit);

free(init.data);

free(uninit.data);

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 65

References

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 66

References

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

What’s wrong with this code?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 67

References

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

Our function has a precondition we forgot to check: input pointers cannot be null.
We did not check, just blindly dereference and access arr::size member.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 68

References

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}
There is actually a faster implementation with memcpy/memmove

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 69

References

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

All of this must be reimplemented for an array of another type.

References

• A reference is a C++98 entity, that can be interpreted as
a restricted pointer

– Cannot be null (may not remain uninitialized)

– Cannot be reassigned (once pointing to something, it remains
that way)

• Due to restrictions, compilers can emit faster code, and
some checks can be safely omitted

• Accessing a varible through a reference incurs no
syntactic noise

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 70

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 71

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

(Apart from it’s name, which was a crime against humanity)
Standard vector is the next best thing after ice cream. It is a heap
allocated, dynamically sized array that can be resized.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 72

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Here, we’re invoking two different constructors:
• The first initializing all elements to the second parameter
• The second which default initializes all elements

NOTE: default initialization does not mean zeroing out! It might be
zero, might not. (Compilers, build types…)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 73

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Not that when we called copy, we did not have to take the address
of the variables. Just write their names. Why?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 74

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Take a look at the function signature:
• We take our arguments by reference (&)
• First argument is a const&, because we do not modify the source
• Second param is a mutable reference
• Note, that earlier we had const arr const* as the first param.

Here we only have one const modifier. Why?
• Because references cannot be reassigned. The reference itself is

always const

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 75

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Take a look at the function signature:
• We take our arguments by reference (&)
• First argument is a const&, because we do not modify the source
• Second param is a mutable reference
• Note, that earlier we had const arr const* as the first param.

Here we only have one const modifier. Why?
• Because references cannot be reassigned. The reference itself is

always const

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 76

References

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Just like before, we resize the array if needed and copy elements
one by one.
• Note that we did not have to use operator-> to access member

functions of std::vector, just use the references as they were the
original variables

Pointers are implementation detail

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 77

• They are clean cut manifests
of memory addresses that
the machine thinks in terms
of

• Once you start manipulating
memory by hand, there’s not
much the compiler can help
you with (safety and
performance wise)

References are abstractions

• A reference truly denotes a
different name (anchor in
code) to the same variable
(not region of memory)

• When you talk in terms of
references, the compiler
knows what you mean and
might optimize the reference
away completely

References

Sum up

• So far we’ve learned how to obtain safety and flexibility
through:

– Function overload to have less function names

– Operator overload to give prettier interfaces than functions

– We’ve created type-generic functions

– We’ve created helper variables that may have type according
to context

– New structs that are again type-generic

– Simplify and optimize our code with references

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 78

IDIO(MA)TIC C++

There are a few things missing to lay the foundations of modern C++

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 79

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 80

Our motto

„Make simple things simpler.”
- Scott Mayers

Catch phrases

• C++ has a few catch phrases that motivates language
design

– Zero overhead abstractions

• When one abstracts/hides complexity, it should not come at the price
of significant performance penalty

– Don’t pay for what you don’t use

• If there is a feature of the language or a library you don’t use, it
should not incur a performance penalty

– Novice friendly over expert friendly

• Facilities for the experts must not make the life of novices harder

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 81

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 82

• Objects (structs/classes) may
need to be initialized before they
are ready to be used
– Initialization usually takes parameters

– Parameterless initialization is called
default construction
• Unless documented otherwise, default

constructed objects are considered to be
in an invalid state

• When objects are disposed of
(leave scope for eg.) they may
need to clean up after themselves

• Copying/moving objects may
require special care

Constructors/destructors

struct arr

{

arr() = default;

arr(const arr& in) : size(in.size)

{

memcpy(data, in.data, size * sizeof(double));

}

arr(arr&& in)

{

std::swap(size, in.size);

std::swap(data, in.data);

}

~arr() { free(data); }

double* data;

size_t size;

};

Rule of 3/5/0

• Rule of 3

– If a class has a copy constructor/assign
operator, destructor implemented, it must have
all three

• Rule of 5

– Those above plus move constructor/assign
operator

• Rule of 0

– CTORs/DTORs must only need be implemented
if the class itself expresses ownership

– In all other cases it can safely be defaulted

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 83

arr& operator=(const arr& in)

{

size = in.size;

memcpy(data,

in.data,

size * sizeof(double));

return *this;

}

Resource Acquisition Is Initialization

• The winner of the most idiotic programming idiom in the
history of computer programming

• Denotes the practice that when objects are

– constructed, they allocate (take ownership) of all resources
they use

– destructed, they release all resources they use

• C++ makes very strong guarantees upon running
CTORs/DTORs, even when process is being terminated,
exceptions (see later) occur, etc.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 84

C

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 85

C++

int main()

{

size_t length = 8;

struct arr init = { ... };

struct arr uninit = { ... };

copy(&init, &uninit);

free(init.data);

free(uninit.data);

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Resource Acquisition Is Initialization

Malloc was explicit

C

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 86

C++

int main()

{

size_t length = 8;

struct arr init = { ... };

struct arr uninit = { ... };

copy(&init, &uninit);

free(init.data);

free(uninit.data);

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Resource Acquisition Is Initialization

CTOR mallocs

C

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 87

C++

int main()

{

size_t length = 8;

struct arr init = { ... };

struct arr uninit = { ... };

copy(&init, &uninit);

free(init.data);

free(uninit.data);

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Resource Acquisition Is Initialization

Free was explicit

C

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 88

C++

int main()

{

size_t length = 8;

struct arr init = { ... };

struct arr uninit = { ... };

copy(&init, &uninit);

free(init.data);

free(uninit.data);

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

Resource Acquisition Is Initialization

DTOR frees

• The term resource is fairly general. It does not only refer to
allocated memory. A resource may be:
– A file handle (open,close)
– A network socket (listen, close)
– An API handle (context, event, etc.)
– An async operation (fork, join)
– A synchronization primitive (mutex lock, unlock)

• RAII not only provides safety, but greatly simplifies code
when dealing with such resources

• The idiom forces the programmer to think about ownership
of resources, whose responsibility is the object and who is
just an observer?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 89

Resource Acquisition Is Initialization

C

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 90

C++

// Release OpenCL resources

for (cl_uint i = 0; i < count; ++i)

clReleaseDevice(devices[i]);

clReleaseContext(context);

clReleaseProgram(program);

clReleaseKernel(kernel);

clReleaseMemObject(buf_x);

clReleaseMemObject(buf_y);

clReleaseCommandQueue(queue);

clReleaseEvent(kernel_event);

// Free host-side memory

free(x);

free(y);

return EXIT_SUCCESS;

}

return EXIT_SUCCESS;

}

Typical OpenCL cleanup

• The STL provides several primitives that encapsulate
ownership of heap allocated objects:

– std::unique_ptr

• Holds an object with uninque ownership

– std::shared_ptr

• Holds an object with shared ownership

– std::weak_ptr

• Holds a non-owning, „weak” pointer to an object with shared
ownership

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 91

Resource Acquisition Is Initialization

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 92

Algorithms

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

What’s wrong with this code?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 93

Algorithms

// Standard C++ includes

void copy(const std::vector<double>& from, std::vector<double>& to)

{

if (from.size() > to.size()) to.resize(from.size());

for (std::size_t i = 0; i < from.size(); ++i) to[i] = from[i];

}

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

copy(init, uninit);

}

What’s wrong with this code?

This is code we never should’ve written in the first place.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 94

Algorithms

// Standard C++ includes

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

std::copy(init.data(), init.data() + init.size(), uninit.data());

}

This is the kind of code we should’ve written in the first place*.
Surely copying an array into another array is common enough for
the STL to provide a facility.

*: Wait for it…

Algorithms

• Algorithms are common building blocks of software

• They are programming primitives that operate on a
range of elements

– What is a range? Zero to some non-infinite number of
elements. (hand waving definition)

• Some algorithms modify the range(s) they operate on,
others just observe it/them

• For a comprehensive list of common operations you do
not have to write by hand, see here.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 95

http://en.cppreference.com/w/cpp/algorithm

Algorithms

No joking!

SEE HERE!
11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 96

http://en.cppreference.com/w/cpp/algorithm

Iterators

• Throughout the sample codes of algorithms, one will find
weird .begin() and .end() pairs on STL containers

• Those return iterator objects

– Iterators traverse containers

– They act like pointers, but are objects

– They provide safety for traversing containers

– Through operator overloading they truly behave like pointers

• Iterators link algorithms to containers in an 𝒪 𝑁 fashion
as opposed to an 𝒪 𝑁2 fashion

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 97

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 98

Iterators

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 99

Iterators

Sequence

std::array

std::vector

std::deque

std::list

AdaptedAssociative

std::set

std::map

std::multiset

std::multimap

std::stack

std::queue

std::priority_queue

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 100

Algorithms

// Standard C++ includes

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

std::copy(init.data(), init.data() + init.size(), uninit.data());

}

This code should instead look like…

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 101

Algorithms

// Standard C++ includes

int main()

{

std::size_t length = 8;

std::vector<double> init(length, 0);

std::vector<double> uninit(length);

std::copy(init.cbegin(), init.cend(), uninit.begin());

}

This code should instead look like…

Algorithms

• And why exactly is this algo mumbo jumbo good for me?

– It makes code more readable

– It makes code more maintainable

– It makes code more portable

– It allows faster coding (no reinventing the wheel)

– It allows for faster code (optimizations you didn’t think of)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 102

Algorithms

• Faster, bahh... nothing is faster than optimized C

– Yes, optimized assembler

– But didn’t we argue earlier that writing optimized assembler is
no longer feasible?

– Isn’t it possible, that writing optimized C isn’t either?

– Didn’t C++ state it is capable of „Zero Cost Abstractions”?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 103

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 104

Algorithms

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}
There is actually a faster implementation with memcpy/memmove
Did I actually stop and think about it?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 105

Algorithms

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

All of this must be reimplemented for an array of another type.

What if that type happens to be a RAII type?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 106

Algorithms

struct arr

{

double* data;

size_t size;

};

void copy(const struct arr const* from, struct arr* to)

{

if (from->size > to->size)

{

free(to);

to->data = (double*)malloc(from->size * sizeof(double));

}

for (size_t i = 0; i < from->size; ++i) to->data[i] = from->data[i];

}

All of this must be reimplemented for an array of another type.

What if that type happens to be a RAII type?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 107

Algorithms

struct side_effect

{

side_effect() : _a(0) { ++_a; }

side_effect(const side_effect& rhs) : _a(rhs._a) { ++_a; }

side_effect(side_effect&& rhs) : _a(rhs._a) { ++_a; }

~side_effect() = default;

side_effect& operator=(const side_effect& rhs) { ++(_a = rhs._a); return *this; }

side_effect& operator=(side_effect&& rhs) { ++(_a = std::move(rhs._a)); return *this; }

int _a;

};

This class does nothing special, other than not being TriviallyCopyable

http://en.cppreference.com/w/cpp/concept/TriviallyCopyable

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 108

Algorithms

int main()

{

std::vector<int> a(10, 1), b(10);

std::vector<side_effect> c(10), d(10);

std::copy(a.cbegin(), a.cend(), b.begin());

std::copy(c.cbegin(), c.cend(), d.begin());

return 0;

}

What are my expectations of the implementation of std::copy?
• I would expect the first to invoke memmove, because I know

that is what I would write in plain C because that compiles to
special assembler instructions that copy data

• I would expect the second to compile to a plain for loop,
because memmove will result in erronous behavior

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 109

Algorithms

int main()

{

std::vector<int> a(10, 1), b(10);

std::vector<side_effect> c(10), d(10);

std::copy(a.cbegin(), a.cend(), b.begin());

std::copy(c.cbegin(), c.cend(), d.begin());

return 0;

}

What are my expectations of the implementation of std::copy?
• I would expect the first to invoke memmove, because I know

that is what I would write in plain C because that compiles to
special assembler instructions that copy data

• I would expect the second to compile to a plain for loop,
because memmove will result in erronous behavior

template<class _InIt,

class _OutIt> inline

_OutIt _Copy_memmove(_InIt _First, _InIt _Last,

_OutIt _Dest)

{ // implement copy-like function as memmove

const char * const _First_ch = reinterpret_cast<const char *>(_First);

const char * const _Last_ch = reinterpret_cast<const char *>(_Last);

char * const _Dest_ch = reinterpret_cast<char *>(_Dest);

const size_t _Count = _Last_ch - _First_ch;

_CSTD memmove(_Dest_ch, _First_ch, _Count);

return (reinterpret_cast<_OutIt>(_Dest_ch + _Count));

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 110

Algorithms

int main()

{

std::vector<int> a(10, 1), b(10);

std::vector<side_effect> c(10), d(10);

std::copy(a.cbegin(), a.cend(), b.begin());

std::copy(c.cbegin(), c.cend(), d.begin());

return 0;

}

What are my expectations of the implementation of std::copy?
• I would expect the first to invoke memmove, because I know

that is what I would write in plain C because that compiles to
special assembler instructions that copy data

• I would expect the second to compile to a plain for loop,
because memmove will result in erronous behavior

template<class _InIt,

class _OutIt> inline

_OutIt _Copy_memmove(_InIt _First, _InIt _Last,

_OutIt _Dest)

{ // implement copy-like function as memmove

const char * const _First_ch = reinterpret_cast<const char *>(_First);

const char * const _Last_ch = reinterpret_cast<const char *>(_Last);

char * const _Dest_ch = reinterpret_cast<char *>(_Dest);

const size_t _Count = _Last_ch - _First_ch;

_CSTD memmove(_Dest_ch, _First_ch, _Count);

return (reinterpret_cast<_OutIt>(_Dest_ch + _Count));

}

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 111

Algorithms

int main()

{

std::vector<int> a(10, 1), b(10);

std::vector<side_effect> c(10), d(10);

std::copy(a.cbegin(), a.cend(), b.begin());

std::copy(c.cbegin(), c.cend(), d.begin());

return 0;

}

What are my expectations of the implementation of std::copy?
• I would expect the first to invoke memmove, because I know

that is what I would write in plain C because that compiles to
special assembler instructions that copy data

• I would expect the second to compile to a plain for loop,
because memmove will result in erronous behavior

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 112

Algorithms

int main()

{

std::vector<int> a(10, 1), b(10);

std::vector<side_effect> c(10), d(10);

std::copy(a.cbegin(), a.cend(), b.begin());

std::copy(c.cbegin(), c.cend(), d.begin());

return 0;

}

What are my expectations of the implementation of std::copy?
• I would expect the first to invoke memmove, because I know

that is what I would write in plain C because that compiles to
special assembler instructions that copy data

• I would expect the second to compile to a plain for loop,
because memmove will result in erronous behavior

template<class _InIt,

class _OutIt> inline

_OutIt _Copy_unchecked1(_InIt _First, _InIt _Last,

_OutIt _Dest, _General_ptr_iterator_tag)

{ // copy [_First, _Last) to [_Dest, ...), arbitrary iterators

for (; _First != _Last; ++_Dest, (void)++_First)

*_Dest = *_First;

return (_Dest);

}

Sum up

• So far we’ve learned how to obtain safety and flexibility
through:

– Function overload to have less function names

– Operator overload to give prettier interfaces than functions

– We’ve created type-generic functions

– We’ve created helper variables that may have type according
to context

– New structs that are again type-generic

– Simplify and optimize our code with references

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 113

Sum up

• And also:

– C++ extended C in ways which allow the programmer to

• stop thinking less about implementation details and more about the
actual problem he/she wants solved

• abstract various aspects of coding (resource management, reoccuring
control flow patterns) into reusable primitives that adapt their behavior
according to calling context

– and this is just the tip of the iceberg

• I have consciously omitted the more advanced stuff, such as template
meta-programming, which drives most of the STL and other high-
quality libraries

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 114

THANK YOU FOR YOUR ATTENTION

Questions?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 115

