Quisner

Gentle introduction to C++

All colors of Physics

Table of Contents Quisner

Important disclaimer @sner

« The beginning of this talk will try to
clarify:
— Every language under the aegis of Turing
has it’s place

— Not all languages were created created
equal (some are indeed more equal)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 3

Important Disclaimer Quisner

« We are evangelists of a given language, although:
— We are aware it is not the ,best” existing one
— We are keen on educating ourselves in other langs. we see fit

« Although our tone might seem hostile at times:

— It is ONLY an instrument of conveying emphasis

— We strive on remaining humble and understanding to the
background of newcomers

»

wicsner

Master Yoda

FEAR OF THE UNKNOWN

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 5

Hierarchy of disagreement @sner

‘ e Refuting the Central Point
_ e Refutation
_ e Counterargument

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 6

»

The , blub” paradox uisner

11/15/2016

The , blub” paradox Qﬁsner

« Let's create a ,power spectrum” of all the languages
— The sorting criteria is the ,expressivity” of the language

« For a moment let’s assume such a spectrum exists

The , blub” paradox Qﬁsner

« Let's create a ,power spectrum” of all the languages
— The sorting criteria is the expressivity of the language
« For a moment let’s assume such a spectrum exists
« Choose a programmer adept in an arbitrary (non-

extremal) language
— Let’s call this language ,,blub”

The ,,blub” paradox Qﬁsner

« Our theoretical ,blub” programmer can verify the
spectrum beneath his language of choice

— He can tell B is better than A, because of features X & Y which
are present in B, but are absent in A

The ,,blub” paradox @sner

« Our theoretical ,blub” programmer can verify the
spectrum beneath his language of choice

— He can tell B is better than A, because of features X & Y which
are present in B, but are absent in A

« However, when looking upward in the spectrum, he/she
only sees a horde of weird languages

— Why does feature Z & Q exist, when I can solve all problems
without them?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Fear of the unknown Quisner

« We can all agree, that writing scientific code in assembler
IS no longer feasible

« Higher level languages (expressivity) came into existance
for a reason

 Programming languages are evolving!

— Fenomena ranging from ,now we can do better” all the way to
,seemed like a good idea at the time” all exist

Fear of the unknown Quisner

« Cobol, Fortran, C
— Close to metal languages

— Hide hardware details
« uniform address space
« weak type safety
 I/O features (operating systems)

— Imperative in nature (just like punch cards and assembler)

— Compilers optimize program code to match machine
preferences

Fear of the unknown Quisner

- C++, D, Go, Rust, C#, Java, etc.
— ,Close to metal” languages

— Ability to create abstractions

« Hide implementation details
— Languages provide varying level of access to low-level features

« Provide runtime safety
— Resource management (RAII, garbage collection)
— Race conditions (parallel programming errors)
— Turn run-time errors into compile-time errors (!)
« EXpressivity
— Inheritance and object orientation (,is a” versus ,has a” relationship)
— Generic programming (code deduplication versus abstraction)

Fear of the unknown Quisner

« OCaml, Haskell, F#, Julia, Idris

— Academic languages

— Applied mathematics

« Expressivity at the forefront
— Sacrifice runtime performance for a more flexible/expressive type system
— Cleaner foundations (less industry and more academy)

»

The ,,blub” paradox uisner

ESIDIDEDIEDIDIDIDEDIADED

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 16

»

The ,,blub” paradox uisner

EPIDIDEDIEDIDIDIDEDIADED

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 17

The ,,blub” paradox uisner

EPIDIDEDIEDEDIEDIEDEDADITD

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 18

The ,,blub” paradox uisner

EPIDIDEDIEDLOEDIEDEDADITID

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 19

Quisner

REINTERPRET CAST<CPP>(C)

And really @Ener

« People tend to forget: C++ is source
compatible with C

* You don’t have to use every fancy
feature

— Tired of string manipulation? Use
std::string

— Want a stateful function? Use a functor

— Support float and double effortlessly? Sure

« Don’t use what you don’t want

/A % "” X
B, A
AL B

i T
\ : e ol ’

4 R e

Y. v

By .

i ’

memegenerator ne

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 21

Source compatibility Qﬁsner

// Standard C includes
// EXIT_SUCCESS

/) printf
argc, * argvl[],
CRT_err = printf("Hello world!");

(CRT_err < 0)
exit();

PS C:\Users\Matty\OneDrive\Develop\wWigner\Active\LoMSP> cl.exe /nologo .\src\Minimal.c

Minimal.c
PS C:\Users\Matty\OneDrive\Develop\wWigner\Active\LoMSP> .\Minimal.exe

Hello world!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Source compatibility Qﬁsner

// Standard C includes
// EXIT_SUCCESS

/) printf

int (int argc, const char* argv[], const char* envp[])
PS C:\Users\Matty\OneDrive\Develop\Wigner\Active\LoMSP> cl.exe /help
Microsoft (R) C/C++ Optimizing Compiler Version 19.00.24215.1 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

C/C++ COMPILER OPTIONS

/TP compile all files as .cpp

PS C:\Users\Matty\OneDrive\Develop\wWigner\Active\LoMSP> cl.exe /nologo /TP .\src\Minimal.c
Minimal.c

PS C:\Users\Matty\OneDrive\Develop\wWigner\Active\LoMSP> .\Minimal.exe

Hello world!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Source compatibility Qﬁsner

// Standard C includes
// EXIT_SUCCESS

/) printf
argc, * argvl[],
CRT_err = printf("Hello world!");

(CRT_err < 0)
exit();

mnagy@vATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$ gcc src/Minimal.c

mnagy@vATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$./a.out
Hello world!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Source compatibility Qﬁsner

// Standard C includes
// EXIT_SUCCESS

/) printf
argc, * argvl[],
CRT_err = printf("Hello world!");

(CRT_err < 0)
exit();

mnagy@vATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$ g++ src/Minimal.c

mnagy@vATTY-Z50-75:/mnt/c/Users/Matty/OneDrive/Develop/Wigner/Active/LoMSP$./a.out
Hello world!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Source compatibility (u?isner

« Modulo differences, most notably
— Variable Length Arrays (on stack) are not supported in C++

a[5];

size t length = 5;

*b = (*)calloc(length,

c[length];

« Some other minor differences, but mostly the same

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 26

Just how deep the rabbit hole is Qﬁsner

F wa.

P L

.~
O
-~

"

"\;\:- - —-n;—:uL .I’#R‘t
2 Ao
.

-
.- P R

.

.
- o> &

g

s

l. 0
4

L |

|

¢

Z

fe

28

And now let’s get our hands dirty

Lectures on Modern Scientific Computing, 2016 Budapest

Namespaces Quisner

« Most C APIs prefix their functions, so that they do not
collide with similar functionality of other APIs

— gsl_integrate_cquad(...)
— glBegin()

— clCreateContext(...)

— efc.

« Function names clearly indicate where features originate
from, but is sometimes tedious to write out

Namespaces Quisner

cl program build program_source(cl_context

{

result clCreateProgramiWithSource(, 1, & , &length, &CL _err);

CL_err = clGetContextInfo(5 5 (cl uint), &numDevices,);
devices = (cl device id*)malloc(numDevices * (cl device_id));
CL_err = clGetContextInfo(s , humDevices *

)5

(cl device id), devices,

build params[] = { "-Werror -cl-std=CL1.0" };
CL_err = clBuildProgram(result, numDevices, devices, build params,

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Namespaces Quisner

program build program_source(context

result CreateProgramWithSource(, 1, & , &length, &CL _err);

CL_err GetContextInfo(5 5 (uint), &numDevices,);
devices = device id*)malloc(numDevices * device _id));

CL_err = ¢ GetContextInfo(B , numDevices * device id), devices,

)5

build params[] = { "-Werror -cl-std=CL1.0" };
CL_err = BuildProgram(result, numDevices, devices, build params,

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Namespaces Quisner

C++98 introduces the notion of namespaces, which can
be traversed by the operator ::

Functions, types and global variables may be placed in
namespaces to separate from other APIs

using namespace directives may be used to omit
namespace names.

These directives are scoped

— In global scope they span the entire translation unit
— In function/plain scope they are restricted to that scope only

Namespaces Quisner

: :Buffer buf x(context, x.begin(), x.end(),
: :Buffer buf_y(context, x.begin(), x.end(),

: :CommandQueue queue(context,
devices.at(9),
cl::QueueProperties: :0utOfOrder | cl::QueueProperties::Profiling);

cl::Event kernel event;

kernel event = vecAdd(cl::EnqueueArgs(queue, cl::NDRange(chainlength)), a, buf x, buf_y);
kernel event.wait();

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Namespaces Quisner

Buffer buf_ x(context, x.begin(), x.end(),
Buffer buf_y(context, x.begin(), x.end(),

CommandQueue queue(context,
devices.at(9),
QueueProperties: :0utOfOrder | QueueProperties::Profiling);

Event kernel event;

kernel_event = vecAdd(EnqueueArgs (queue, NDRange(chainlength)), a, buf_x, buf_y);
kernel event.wait();

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Namespaces Quisner

cl;
Buffer buf x(context, x.begin(), x.end(),
Buffer buf_y(context, x.begin(), x.end(),

CommandQueue queue(context,
devices.at(Q0),
QueueProperties: :0utOfOrder | QueueProperties::Profiling);

Event kernel event;

kernel_event = vecAdd(EnqueueArgs(queue, NDRange(chainlength)), a, buf_x, buf_y);
kernel event.wait();

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

In C every function has to have a uniqgue name

Because of this, people end up with functions such as:
— abs
— labs
— llabs

These all essentially do the same thing, but have a different
name

This is not only tedious, but significantly hinders generic
programming

The standard library in cases provide type-generic versions
of such functions #include <tgmath.h> but the macro magic
inside, is not for the faint of heart

o

Function overloading gisner

#include <stdlib.h>
#include <stdio.h>

c_abs() {
c_labs() {
c_1labs(

main()

negative = -5;
positive = c_labs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

Function overloading gisner

#include <stdlib.h>
#include <stdio.h>

c_abs() {
c_labs() {
c_1labs(

main()

negative = -5;
positive = c_labs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

#include <stdlib.h>
#include <stdio.h>

integral; natural; Try adding some genericity to the code.

c_abs() A)abs(in); }
c_labs() {)labs(in); }
c_llabs(()llabs(in); }

main()

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

#include <stdlib.h>
#include <stdio.h>

integral; natural; What happens if | change the types?

c_abs() A)abs(in); }
c_labs() {)labs(in); }
c_llabs(()llabs(in); }

main()

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

Function overloading gisner

#include <stdlib.h>
#include <stdio.h>

integral; natural; What happens if | change the types?

c_abs() A)abs(in); }
c_labs() {)labs(in); }
c_llabs(()llabs(in); }

main()

integral negative = -5;
natural positive = c_labs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading

#include <stdlib.h>
#include <stdio.h>

integral,; natural;

c_abs() A)abs(in); }
c_labs() {)labs(in); }
c_llabs(()llabs(in); }

main()

integral negative = -5;
natural positive =Cc labs(negative); Widening conversion (the better case)

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Quisner

Function overloading Qﬁsner

#include <stdlib.h>
#include <stdio.h>

integral,; natural;

c_abs() A)abs(in); }
c_labs() {)labs(in); }
c_llabs(()llabs(in); }

main()

We possibly print garbage values to console, %ld might read more than %d
integral negative = -5;
natural positive = c_labs(negative);
printf("Absolute value ofi%1ld is %lu\r", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

« C++4+98 allows to , overload” the name of the function to

behave differently, depending on the types of its
arguments

« Because of this, one can define functions such as:
—int abs(int)

—long abs(long)
—long long abs(long long)

« The internals of these functions might behave differently
(and it does) based on input

« The standard library provides this function as std::abs

http://en.cppreference.com/w/cpp/numeric/math/abs

Function overloading Qﬁsner

#include <cmath>
#include <stdio.h>

integral,; nhatural;
cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive cpp_abs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

#include <cmaths Do not wiki search std, because here it does not refer to sexually
#include <stdio.h> transferable disease, but it denotes the namespace of the C++
STanDard library
integral,; natural;

cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive cpp_abs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

#include <cmath>
#include <stdio.h>

integral: nhatural;

cpp_abs() N ()std::abs(in); }
cpp_abs() { ()std::abs(in); }
cpp_abs() { ()std::abs(in); }

) Notice how the function names are identical

Therefor the call site need not be changed when the typedefs are changed
integral negative -5:

natural positive cpp_abs(negative);

printf("Absolute value of %1d is %lu\n", negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function overloading Qﬁsner

#include <cmath>
#include <stdio.h>

integral,; natural;

cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive = cpp_abs(negative); However, this part still did not follow the change of typedefs

printf("Absolute value ofl %1d is %lu\n’, negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Operator overloading Qﬁsner

« C++98 feature, that allows overloading not just function
names, but also the built-in operators to behave
differently for both built-in and non-built-in types

« Because writing things like

custom::my struct a, b;

custom::my struct c = a custom::+ b;

— would be weird, operators do not reside in namespaces
« Most operators can be overloaded

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 48

http://en.cppreference.com/w/cpp/language/operators

Operator overloading Qﬁsner

#include <cmath>
#include <stdio.h>

integral,; natural;

cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive = cpp_abs(negative); Recall this part was one of our concerns

printf("Absolute value ofl %1d is %lu\n’, negative, positive);

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Operator overloading Qﬁsner

#include <cmath>
#include <iostream>

integral,; nhatural;
cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive cpp_abs(negative);

std::cout << "Absolute value of " << negative << " 1is " << positive;

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Operator overloading Qﬁsner

#include <cmath>
#include <iostream>

integral,; natural;

cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs(()std::abs(in); }
main() Overloading the binary left-shift operator, we can ,push” things into
cout, the console out entity. operator<< is by default overloaded for

CMEEEIEI NEEEELYE = o std::ostream (the type of std::cout) and all built-in types.

natural positive cpp_abs(negative);

std::couti << "Absolute value of "|<< negative (<< /" is "<« positive << std::endl;

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

»

Function template wisner

« What is a function template?
— It is NOT a function
— It is a recipe to create a function
« What is a template function?
— It is function, that was generated from a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 52

»

Function template wisner

« What is a function template?
— It is NOT a function
— It is a recipe to create a function
« What is a template function?
— It is function, that was generated from a template

> T sq(T t) { R

This tells us we’re introducing a template

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 53

»

Function template wisner

« What is a function template?
— It is NOT a function
— It is a recipe to create a function

« What is a template function?
— It is function, that was generated from a template

< T> T sq(T t) { R bE

main() Inside the angle brackets, we have a comma separated list of template parameters. In this case,
it happens to be the name of a type. We can use this name throughout the function signature

a = sq(5); and the implementation.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 54

»

Function template wisner

« What is a function template?
— It is NOT a function
— It is a recipe to create a function
« What is a template function?
— It is function, that was generated from a template

T t) { eI

When the compiler reaches finishes compiling this part of the code, nothing is done
yet. This is not a function, just a recipe to create one.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 55

»

Function template wisner

« What is a function template?
— It is NOT a function
— It is a recipe to create a function
« What is a template function?

— It is function, that was generated from a template
Tt){ *t;)

When it reaches the call site, this is when the function is instantiated, meaning that
a declaration/definition is generated with the type provided.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 56

Function template Quisner

#include <cmath>
#include <iostream>

integral,; nhatural;
cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs()std::abs(in); }

main()

integral negative -5;
natural positive cpp_abs(negative);

std::cout << "Absolute value of " << negative << " 1is " << positive << std::endl;

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function template Quisner

#include <cmath>
#include <iostream>

integral,; natural;

cpp_abs() {)std::abs(in); }
cpp_abs() {)std::abs(in); }
cpp_abs(()std::abs(in); }

main() This is not just tedious and repetitive, but also error prone. The
names of the functions all match, the implementations due to

integral negative = -5; overloading of the wrapped function also match...

natural positive cpp_abs(negative);

std::cout << "Absolute value of " << negative << " 1is " << positive << std::endl;

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Function template Quisner

#include <cmath>
#include <iostream>

integral,; natural;

T> T in) { (T)std::abs(in); };

main()

integral negative = -5;
natural positive = cpp _abs(negative);

std::cout << "Absolute value of " << negative << " 1is " << positive << std::endl;

return

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Variable template Quisner

« What is a variable template?
— It NOT an instance a variable
— It is a recipe to create a variable

« What is a template variable?

— It is variable, that was generated from a template
— Just like other templates, can only be declared at global scope

< T pi = (T)3.1415926535897932384626433832795;

main()

diameter = 2*r*pi< >;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 60

Class template @sner

 What is a class template?
— It is NOT a type

— It Is a recipe to generate a type
« What is a template class?

— It is a complete type, that was generated from a template

my_array { T* data; size_t size; }

main()

size t length = 5;
my array<real> arr = {(real*)malloc(length * (real)), length};

11/15/2016

Lectures on Modern Scientific Computing, 2016 Budapest 61

Further on templates Qﬁsner

 If you want to know more of templates and how they
work, I suggest watching the following tutorial

— Channel9: Stephan T. Lavavej: Core C++

— CppCon 2016: Arthur o’'Dwyer, Template Normal Programming

— CppCon 2015: Walter E. Brown, Template Metaprogramming
Compendium

« When looking for guides/tutorials on templates, avoid
anything with ,meta” in it's content

— Templates = metaprorgramming

References Quisner

« Without any decoration, both C and C++ take function
parameters , by value”

— Incurs a copy of the object

— Modifying the object results in modifying the copy, not the
original. This is vexing when
« One does not wish to pay the extra CPU cycles it takes to make a copy
« One wishes to write a function that operates on a parameter
. C?]ne)wants to emulate multiple return values (C++17 might address
this
« Taking a values pointer in contrast is a solution to all of
the above

References Quisner

#include <stdlib.h>
main()
size t length = 8;

arr init = { (*Imalloc(length *)) , length };
arr uninit = { (*)calloc(length,)) , length };

copy(&init, &uninit);

free(init.data);
free(uninit.data);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

References wisner

* data;
size t size;

copy (arr
(->size > ->size)

free(to);
->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[i];

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

References wisner

What’s wrong with this code?

* data;
size t size;

copy (arr
(->size > ->size)

free(to);
->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[i];

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

* data;
size t size;

copy (arr 5 arr*)

Our function has a precondition we forgot to check: input pointers cannot be null.

(->size > to->size) We did not check, just blindly dereference and access arr::size member.

free(to);

->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[i];

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

References wisner

* data;
size t size;
copy (arr
(->size > ->size)
free(to);
->data = (*Imalloc(->size *));
(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[i];

There is actually a faster implementation with memcpy/memmove

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

References wisner

All of this must be reimplemented for an array of another type.

* data;
size t size;

copy (arr
(->size > ->size)

free(to);
->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[il;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

« A reference is a C++98 entity, that can be interpreted as

a restricted pointer
— Cannot be null (may not remain uninitialized)

— Cannot be reassigned (once pointing to something, it remains

that way)
« Due to restrictions, compilers can emit faster code, and

some checks can be safely omitted
« Accessing a varible through a reference incurs no

syntactic noise

References Quisner

copy (std: :vector< >& , std::vector«
(.size() > .size()) .resize(.size());
(std::size t 1 =0; i < .size(); ++1) [i] = [1i];

(Apart from it’s name, which was a crime against humanity)
Standard vector is the next best thing after ice cream. It is a heap
allocated, dynamically sized array that can be resized.

main()
std::size t length 8;

std: :vector« >-init(length, 0);
std: :vector« > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

copy (std: :vector< >& , std::vector«
(.size() > .size()) .resize(.size());
(std::size t 1 =0; i < .size(); ++1) [i] = [1i];

Here, we're invoking two different constructors:
main() e The first initializing all elements to the second parameter
* The second which default initializes all elements
std::size t length 8;
NOTE: default initialization does not mean zeroing out! It might be

std::vector< > init(length, @); zero, might not. (Compilers, build types...)

std: :vector« > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

copy (std: :vector< >& , std::vector«
(.size() > .size()) .resize(.size());
(std::size t 1 =0; i < .size(); ++1) [i] = [1i];

Not that when we called copy, we did not have to take the address

main() of the variables. Just write their names. Why?

std::size t length 8;

std: :vector< > init(length, 0);
std: :vector< > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

std: :vector< >& , std::vector«
.size() > .size()) .resize(.size());
(std::size t i = 0; i < .size(); ++1) [i] = [i];

Take a look at the function signature:
main() * We take our arguments by reference (&)
e First argument is a const&, because we do not modify the source
std::size_t length = 8; Second param is a mutable reference
* Note, that earlier we had const arr const™ as the first param.
Here we only have one const modifier. Why?

Because references cannot be reassigned. The reference itself is
always const

std: :vector« > init(length, 0);
std: :vector« > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

std: :vector< >& , std::vector«
.size() > .size()) .resize(.size());
(std::size t i = 0; i < .size(); ++1) [i] = [i];

Take a look at the function signature:
main() * We take our arguments by reference (&)
e First argument is a const&, because we do not modify the source
std::size_t length = 8; Second param is a mutable reference
* Note, that earlier we had const arr const™ as the first param.
Here we only have one const modifier. Why?

Because references cannot be reassigned. The reference itself is
always const

std: :vector« > init(length, 0);
std: :vector« > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References Quisner

copy (std: :vector< >& , std::vector«
(.size() > .size()) .resize(.size());

(std::size t i = 0; i < .size(); ++1) [i] = [i]:

main() Just like before, we resize the array if needed and copy elements

one by one.

* Note that we did not have to use operator-> to access member
std: s vector< > init(length, @); fu.nc_tlons of std::vector, just use the references as they were the
std: :vector< > uninit(length); original variables

std::size t length 8;

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

References

Quisner

Pointers are implementation detail

« They are clean cut manifests
of memory addresses that
the machine thinks in terms
of

Once you start manipulating
memory by hand, there’s not
much the compiler can help
you with (safety and
performance wise)

References are abstractions
« A reference truly denotes a

different name (anchor in
code) to the same variable
(not region of memory)

When you talk in terms of
references, the compiler
knows what you mean and
might optimize the reference
away completely

Sum up Quisner

So far we've learned how to obtain safety and flexibility
through:

— Function overload to have less function names

— Operator overload to give prettier interfaces than functions

— We've created type-generic functions

— We've created helper variables that may have type according
to context

— New structs that are again type-generic
— Simplify and optimize our code with references

»

wicsner

There are a few things missing to lay the foundations of modern C++

IDIO(MA)TIC C++

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 79

Our motto

Quisner .

,Make simple things simpler.”

- Scott Mayers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

80

Catch phrases Quisner

« C++ has a few catch phrases that motivates language
design
— Zero overhead abstractions

« When one abstracts/hides complexity, it should not come at the price
of significant performance penalty

— Don’t pay for what you don’t use

« If there is a feature of the language or a library you don’t use, it
should not incur a performance penalty

— Novice friendly over expert friendly
« Facilities for the experts must not make the life of novices harder

Constructors/destructors Qﬁsner

« Objects (structs/classes) may arr
need to be initialized before they () — |
are ready to be Used arr(arr& ;) : size(in.size)
— Initialization usually takes parameters {
— Parameterless initialization is called memcpy(data, in.data, size *
default construction }
. Unless documented otherwise, default SIFEIARE 211
constructed objects are considered to be { . .
in an invalid state std: :swap(size, .size);
. . td:: data, .data);
- When objects are disposed of - Rl ate)
(leave scope for eg.) they may ~arr() { free(data); }

need to clean up after themselves

« Copying/moving objects may
require special care

* data;
size t size;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 82

Rule of 3/5/0 Qﬁsner

® RUle Of 3 arr& operator=(
{

— If a class has a copy constructor/assign size = in.size;
operator, destructor implemented, it must have | == (dafj;ta
all three size * :

 Rule of 5

— Those above plus move constructor/assign

operator
« Rule of O

— CTORs/DTORs must only need be implemented
If the class itself expresses ownership

— In all other cases it can safely be defaulted

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 83

Resource Acquisition Is Initialization Qﬁsner

« The winner of the most idiotic programming idiom in the
history of computer programming

« Denotes the practice that when objects are

— constructed, they allocate (take ownership) of all resources
they use

— destructed, they release all resources they use

e C makes very strong guarantees upon running
CTORs/DTORs, even when process is being terminated,

exceptions (see later) occur, etc.

Resource Acquisition Is Initialization (ﬁsner

main() main()
size t length = 8; std::size t length = 8;

arr init ={ ... }; std: :vector« > init(length, 0);
arr uninit.= { ... }: std: :vector< > uninit(length);

copy(&init, &uninit); copy(init, uninit);

free(init.data); Malloc was explicit

free(uninit.data);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Resource Acquisition Is Initialization (ﬁsner

main() main()
size t length = 8; std::size t length = 8;

arr init = { ... }; std: :vector« > init{length, 0);
arr uninit = { ... }; std: :vector< > uninit(length);

copy(&init, &uninit); copy(init, uninit); CTOR mallocs

free(init.data);
free(uninit.data);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Resource Acquisition Is Initialization (ﬁsner

main() main()
size t length = 8; std::size t length = 8;

arr init = { ... }; std: :vector< > init(length, 0);
arr uninit = { ... }; std: :vector< > uninit(length);

copy(&init, &uninit); copy(init, uninit);
Free was explicit

free(init.data);

free(uninit.data);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Resource Acquisition Is Initialization (ﬁsner

main() main()
size t length = 8; std::size t length = 8;

arr init = { ... }; std: :vector< > init(length, 0);
arr uninit = { ... }; std: :vector< > uninit(length);

copy(&init, &uninit); copy(init, uninit);

free(init.data); DTOR frees
free(uninit.data);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Resource Acquisition Is Initialization Qﬁsner

« The term resource is fairly general. It does not only refer to
allocated memory. A resource may be:
— A file handle (open,close)
— A network socket (listen, close)
— An API handle (context, event, etc.)
— An async operation (fork, join)
— A synchronization primitive (mutex lock, unlock)
« RAII not only provides safety, but greatly simplifies code
when dealing with such resources
« The idiom forces the programmer to think about ownership
of resources, whose responsibility is the object and who is
just an observer?

Typical OpenCL cleanup (ﬁsner

(cl uint 1 = @0; i < count; ++1i)

clReleaseDevice(devices[i]);
clReleaseContext(context);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseMemObject(buf x);
clReleaseMemObject(buf_y);
clReleaseCommandQueue(queue);
clReleaseEvent(kernel event);

free(x);
free(y);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Resource Acquisition Is Initialization Qﬁsner

« The STL provides several primitives that encapsulate
ownership of heap allocated objects:
— std::unique ptr
« Holds an object with uninque ownership
— std::shared ptr
« Holds an object with shared ownership
— std::weak ptr

- Holds a non-owning, ,weak” pointer to an object with shared
ownership

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 91

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr

Algorithms Quisner

.size() > .size()) .resize(.size());
(std::size t i = 0; i < .size(); ++1) [i] = [i];
main()
What’s wrong with this code?

std::size t length 8;

std: :vector« > init(length, 0);
std: :vector« > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

.size() > .size()) .resize(.size());

(std::size t i = 0; i < .size(); ++1) [i] = [i];

main()
What’s wrong with this code?
std::size t length 8;
This is code we never should’ve written in the first place.
std: :vector< > init(length, 0);
std: :vector< > uninit(length);

copy(init, uninit);

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

main() This is the kind of code we should’ve written in the first place*.

Surely copying an array into another array is common enough for
std::size_t length = 8; the STL to provide a facility.

std: :vector< > init(length, 0); *. \Nait for it...
std: :vector< > uninit(length);

std::copy(init.data(), init.data() + init.size(), uninit.data());

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

 Algorithms are common building blocks of software
« They are programming primitives that operate on a
range of elements

— What is a range? Zero to some non-infinite number of
elements. (hand waving definition)

« Some algorithms modify the range(s) they operate on,
others just observe it/them

« For a comprehensive list of common operations you do
not have to write by hand, see here.

http://en.cppreference.com/w/cpp/algorithm

Algorithms @Ener

No joking!

SEE HEREI

eee

http://en.cppreference.com/w/cpp/algorithm

terators Quisner

« Throughout the sample codes of algorithms, one will find
weird .begin() and .end() pairs on STL containers

« Those return iterator objects
— Iterators traverse containers

ney act like pointers, but are objects
ney provide safety for traversing containers

nrough operator overloading they truly behave like pointers

 Jterators link algorithms to containers in an O(N) fashion
as opposed to an O(N?) fashion

»

Iterators wicsner

_/\

BEGIN END

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 98

lterators

Quisner

Sequence

std::array

std::vector

std::deque

std::list

Associative

std::set

std::map

std::multiset

std::multimap

Adapted

std::stack

std::queue

std::priority _queue

Algorithms Quisner

main()
std::size t length = 8;

This code should instead look like...
std: :vector< > init(length, 0);

std: :vector« > uninit(length);

std::copy(init.data(), init.data() + init.size(), uninit.data());

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

Algorithms wicGner

main()
std::size t length = 8;

This code should instead look like...
std: :vector< > init(length, 0);

std: :vector« > uninit(length);

std::copy(init.cbegin(), init.cend(), uninit.begin());

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

« And why exactly is this algo mumbo jumbo good for me?
— It makes code more readable
— It makes code more maintainable
— It makes code more portable
— It allows faster coding (no reinventing the wheel)
— It allows for faster code (optimizations you didn’t think of)

Algorithms Quisner

« Faster, bahh... nothing is faster than optimized C
—Yes, optimized assembler

— But didn’t we argue earlier that writing optimized assembler is
no longer feasible?

— Isn’t it possible, that writing optimized C isn’t either?
— Didn’t C++ state it is capable of ,,Zero Cost Abstractions”?

Algorithms Quisner

* data;
size t size;
copy (arr
(->size > ->size)
free(to);
->data = (*Imalloc(->size *));
(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[i];

There is actually a faster implementation with memcpy/memmove
Did | actually stop and think about it?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

Algorithms wicGner

All of this must be reimplemented for an array of another type.

* data;
size t size; What if that type happens to be a RAIl type?

copy (arr
(->size > ->size)

free(to);
->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[il;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

o

Algorithms wicGner

All of this must be reimplemented for an array of another type.

* data;
size t size; What if that type happens to be a RAIl type?

copy (arr
(->size > ->size)

free(to);
->data = (*Imalloc(->size *))s

(size t i =0; 1 < ->size; ++1i) ->data[i] = ->data[il;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

side effect
side effect() : _a(@) { ++_a; }
side_effect(side effect&) ¢ _a(._a) { ++_a; }
side effect(side effect&&)+ _a(.a) { ++_a; }
~side effect() = >

side_effect& operator=(side_effect&) { ++(_a = ._a);
side_effect& operator=(side_effect&&) { ++(_a = std::move(..a));

a,

This class does nothing special, other than not being

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

http://en.cppreference.com/w/cpp/concept/TriviallyCopyable

Algorithms Quisner

main
¥ What are my expectations of the implementation of std::copy?
std::vector<int> a(10, 1), b(10); * | would expect the first to invoke memmove, because | know
std: :vector<side _effect> c(10), d(190); that is what | would write in plain C because that compiles to
special assembler instructions that copy data
std::copy(a.cbegin(), a.cend(), b.begin()); | would expect the second to compile to a plain for loop,

because memmove will result in erronous behavior
std::copy(c.cbegin(), c.cend(), d.begin());

9;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

main()

std: :vector«
std: :vec

std::cop
std::cop

0

11/15/2016

_OutIt Copy_memmove(InIt , _InIt

W

Algorithms wicGner

What are my expectations of the implementation of std::copy?
> a(10. 1). h(10): * | would expect the first to invoke memmove, because | know

< _InIt, > that compiles to
_OutIt> a
lain for loop,

_OutIt))ehavior

_First ch = <
_Last _ch = <
i _Dest _ch = < *>();
size t Count = Last ch - _First ch;
memmove(_Dest ch, First ch, Count);
(<_OutIt>(Dest ch + Count));

Lectures on Modern Scientific Computing, 2016 Budapest

main()

std: :vector«
std: :vec

std::cop
std::cop

0

11/15/2016

_OutIt Copy_memmove(InIt , _InIt

o

Algorithms wicGner

What are my expectations of the implementation of std::copy?
> a(10. 1). h(10): * | would expect the first to invoke memmove, because | know

< _InIt, > that compiles to
_OutIt> a
lain for loop,

_OutIt))ehavior

_First ch = <
_Last _ch = <
i _Dest _ch = < *>();
size t Count = last ch - First ch;
memmove(_Dest ch, First ch, Count);
(< Outit>(Dest ch + Count));

Lectures on Modern Scientific Computing, 2016 Budapest

Algorithms Quisner

main
¥ What are my expectations of the implementation of std::copy?
std::vector<int> a(10, 1), b(10); * | would expect the first to invoke memmove, because | know
std: :vector<side _effect> c(10), d(190); that is what | would write in plain C because that compiles to
special assembler instructions that copy data
std::copy(a.cbegin(), a.cend(), b.begin()); | would expect the second to compile to a plain for loop,

because memmove will result in erronous behavior
std::copy(c.cbegin(), c.cend(), d.begin());

9;

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

W

Algorithms wicGner

main()

What are my expectations of the implementation of std::copy?
std::vector<int> a(10, 1), b(10); * | would expect the first to invoke memmove, because | know
std: :vector<side _effect> c(10), d(190); that is what | would write in plain C because that compiles to

< _InIt, -
OUtTt> lain for loop,
_OutIt Copy_uncheckedl(InIt , _InIt ehavior
_OutIt , _General ptr_ iterator_tag)

std::cop
std::cop

2 , (void)++

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest

Sum up Quisner

So far we've learned how to obtain safety and flexibility
through:

— Function overload to have less function names

— Operator overload to give prettier interfaces than functions

— We've created type-generic functions

— We've created helper variables that may have type according
to context

— New structs that are again type-generic
— Simplify and optimize our code with references

Sum up Quisner

 And also:

— C++ extended C in ways which allow the programmer to

 stop thinking less about implementation details and more about the
actual problem he/she wants solved

« abstract various aspects of coding (resource management, reoccuring
control flow patterns) into reusable primitives that adapt their behavior
according to calling context

—and this is just the tip of the iceberg

I have consciously omitted the more advanced stuff, such as template
meta-programming, which drives most of the STL and other high-
quality libraries

Quisner

THANK YOU FOR YOUR ATTENTION

