
All colors of PhysicsAll colors of PhysicsAll colors of Physics

Integrated Development Environments

And why you should care

Máté Ferenc Nagy-Egri

Wigner GPU Lab

Table of Contents

• The dark side of the force

– The best and latest from Microsoft

– Posh users

• Integrated development Environments

– Do they make coffee?

– If not, why would I use one?

– From text editor to IDE

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 2

EMBRACE THE DARK SIDE

Microsoft and Linux, one happy family

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 3

Embrace the dark side

• There seems to be a widely accepted axiom that
Microsoft, Windows in particular and scientific computing
don’t mix well

– Linux is for the pros, command-line FTW

– Windows is click-click, plus it’s Microsoft

• Avoiding starting a flame war, there are a few
advancements which are generally „good to know”

• Why is it important what happens in the Windows
domain?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 4

Desktop operating system usage based on web browser usage. (Source: https://www.netmarketshare.com)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 5

Embrace the dark side

Desktop OS Marketshare

Windows 7 Windows 10 OSX Windows 8.1 Windows XP

Other Windows 8 Linux Windows Vista Chrome OS

Desktop OS Marketshare

Windows derivate OSX Other Linux Chrome OS

https://www.netmarketshare.com

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 6

• Windows as a serious compute platform?

– Nano Server is an ultra minimalistic Windows Server installation

• 200 MB taken on disk, no 32-bit support, no GUI

• No MSI, WSA only (the trusted version of the Windows Store APPX package format)

• Clean install has only 20 processes running

• Only PowerShell (command-line) management

– More information here.

Embrace the dark side

https://blogs.msdn.microsoft.com/windowsappdev/2012/12/04/designing-a-simple-and-secure-app-package-appx/
https://blogs.technet.microsoft.com/windowsserver/tag/nano-server/

Satya Nadella @ Build 2016 talking about Microsoft’s plans in embracing Linux and open-source software

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 7

Embrace the dark side

Embrace the dark side

• Microsoft is shifting to being a service provider as
opposed to being a software vendor

• Key to having a large subscriber base is the ability to
provide service on all of the platforms

– Microsoft Office Mobile was published on iOS and Android ~6
months ahead of Windows 10 Mobile

– Discontinue proprietary .NET in favor of open-source version

• Microsoft internally has a Linux flavor of their own (Azure
cloud services)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 8

.NET for the masses

• What is .NET?

– It is a software execution framework (Common Language
Runtime, aka. CLR) and a standard framework class library
which together provide language interoperability.

• Why .NET?

– Language interoperability is seamless.

• Author a library in one language, consume in another

– Portability

• On 27 June 2016, .NET Core 1.0 was publicly released, marking the
birth of cross-platform .NET

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 9

.NET for the masses

• What languages live in the .NET family?

– C#, the most common .NET language. MS alternative to Java

– F#, multi-paradigm (purely functional, imperative) language

– L#, an implementation of Lisp atop .NET

– C++/CLI, a C++ language extension to interface with
managed code of .NET

– IronPython, an implementation of Python atop .NET

– PowerShell, an interactive shell and scripting language

– etc...

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 10

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 11

• PowerShell, a strongly typed:

– Scripting language

– Interactive shell

• First release 2006

• It is the Windows counterpart
of bash+Ruby/Perl

• Primary purpose is
automation

• Runs atop .NET (Core)

• Website

May the shell be with you

https://www.microsoft.com/net/core

May the shell be with you

• Unlike the document-oriented Unix shells, it adopts the
API-oriented philosophy of Windows

– Stream-of-chars vs. objects

– Data structures are first-class citizens

• High-emphasis on security

– Script execution policies, trusted vendors, signatures, etc.

– Super-user vs. admin privilege

• Domain-specific languages

– Introduction of keywords for DSL functionality (DSC, WWF)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 12

https://msdn.microsoft.com/en-us/PowerShell/dsc/overview
https://msdn.microsoft.com/en-us/library/jj684582.aspx

May the shell be with you

• Commands are often referred to as Cmdlets

– They are full blown script entry points with tab-completion,
optional parameter validation and all that jazz

• Cmdlet names always consist of a Verb-Noun pair

– Discoverability

– Intuitive

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 13

PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

Loading personal and system profiles took 1295ms.
PS C:\Users\Matty>

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 14

May the shell be with you

PS C:\Users\Matty> Get-Verb

Verb Group
---- -----
Add Common
Clear Common
Close Common
Copy Common
Enter Common
Exit Common
Find Common
Format Common
Get Common
Hide Common
Join Common
Lock Common
Join Common
Lock Common
Move Common

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 15

May the shell be with you

PS C:\Users\Matty> Get-Command -Noun Package

CommandType Name Version Source
----------- ---- ------- ------
Cmdlet Find-Package 1.0.0.1 PackageManagement
Cmdlet Get-Package 1.0.0.1 PackageManagement
Cmdlet Install-Package 1.0.0.1 PackageManagement
Cmdlet Save-Package 1.0.0.1 PackageManagement
Cmdlet Uninstall-Package 1.0.0.1 PackageManagement

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 16

May the shell be with you

PS C:\Users\Matty> Get-Process

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------

0 17 6444 22928 0,97 13572 4 ApplicationFrameHost
0 9 1548 7684 9972 4 atieclxx
0 12 2812 10788 12392 4 atieclxx
0 7 1392 2072 1480 0 atiesrxx
0 13 8188 15168 1,38 16572 0 audiodg
0 17 4220 17860 0,45 10356 4 browser_broker
0 11 1872 3184 2620 0 BTDevMgr
0 33 4528 15208 13,17 972 4 BTServer
0 10 1796 7796 0,27 13276 4 CAudioFilterAgent64
0 5 772 652 2612 0 CodeXLDriversLoadService-x64
0 7 1148 4976 9416 0 conhost
0 14 6488 17128 7,75 11124 4 conhost
0 15 1452 2812 524 0 csrss
0 15 2032 5940 14688 4 csrss

...

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 17

May the shell be with you

PS C:\Users\Matty> Get-Process | Sort-Object -Descending

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------

0 17 6444 22928 0,97 13572 4 ApplicationFrameHost
0 9 1548 7684 9972 4 atieclxx
0 12 2812 10788 12392 4 atieclxx
0 7 1392 2072 1480 0 atiesrxx
0 17 4220 17860 0,45 10356 4 browser_broker
0 11 1872 3184 2620 0 BTDevMgr
0 33 4528 15208 13,17 972 4 BTServer
0 10 1796 7796 0,27 13276 4 CAudioFilterAgent64
0 5 772 652 2612 0 CodeXLDriversLoadService-x64
0 7 1148 4976 9416 0 conhost
0 14 6488 17176 8,83 11124 4 conhost
0 15 2044 6288 14688 4 csrss
0 15 1452 2816 524 0 csrss
0 21 6800 10828 1800 0 dasHost

...

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 18

May the shell be with you

PS C:\Users\Matty> Get-Process | Sort-Object -Descending -Property CPU

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------

0 97 168252 226508 206,80 10044 4 POWERPNT
0 214 290184 284508 69,20 12700 4 MicrosoftEdgeCP
0 41 87284 104884 50,75 9936 4 OneDrive
0 17 9664 21900 35,28 10484 4 ETDCtrl
0 55 37640 1328 32,61 10004 4 SkypeHost
0 42 21168 50096 25,58 11316 4 svchost
0 76 90176 122152 19,22 10152 4 explorer
0 33 4528 15208 13,17 972 4 BTServer
0 14 6488 17208 11,98 11124 4 conhost
0 64 44568 72616 12,06 2304 4 powershell
0 59 36768 87320 10,53 8364 4 MicrosoftEdge
0 27 18200 38872 8,97 9984 4 RuntimeBroker
0 16 6228 23176 6,86 8652 4 sihost
0 33 25132 43712 6,17 14084 4 Lenovo.Modern.ImController.PluginHost

...

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 19

May the shell be with you

PS C:\Users\Matty> Get-Process | Sort-Object -Descending -Property CPU | Select-Object -First 4

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------

0 96 192716 250664 267,80 10044 4 POWERPNT
0 214 290088 284428 69,44 12700 4 MicrosoftEdgeCP
0 41 87284 104884 50,75 9936 4 OneDrive
0 17 9912 22148 38,31 10484 4 ETDCtrl

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 20

May the shell be with you

PS C:\Users\Matty> Get-Process |
>> Sort-Object -Descending -Property CPU |
>> Select-Object -First 4 |
>> Stop-Process
PS C:\Users\Matty>

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 21

May the shell be with you

PS C:\Users\Matty> Get-Process |
>> Sort-Object -Descending -Property CPU |
>> Select-Object -First 4 |
>> Stop-Process
PS C:\Users\Matty> ps | sort -Desc -Prop CPU | select -First 4 | kill

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 22

May the shell be with you

PS C:\Users\Matty> Get-Process |
>> Sort-Object -Descending -Property CPU |
>> Select-Object -First 4 |
>> Stop-Process
PS C:\Users\Matty> ps | sort -Desc -Prop CPU | select -First 4 | kill
PS C:\Users\Matty>
PS C:\Users\Matty> ps | sort -D -P CPU | select -F 4 | kill

May the shell be with you

• Okay, I get, the pipe is awesome with objects, so?

• Data structures are first class citizens too. Hm?

– Arrays, dictionaries are distinct types with meaningful member
functions

– When data presents itself in any of these natural structures, it
manifests in the API

• When functions return multiple objects, it is usually an array of structs

• When data is organized into a tree structure, it is usually presented as
a PSDrive

– File systems, Windows registry, environmental variables, etc.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 23

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 24

May the shell be with you

PS C:\Users\Matty> $dirs = ls
PS C:\Users\Matty> $dirs.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

PS C:\Users\Matty> $count = $dirs.Length
PS C:\Users\Matty> $count.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False Int32 System.ValueType

PS C:\Users\Matty> $count
27
PS C:\Users\Matty>

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 25

May the shell be with you

PS C:\Users\Matty> cd env:
PS Env:\> ls

Name Value
---- -----
ALLUSERSPROFILE C:\ProgramData
AMDAPPSDKROOT C:\Kellekek\AMD APP SDK\3.0\
APPDATA C:\Users\Matty\AppData\Roaming
ChocolateyPath C:\Chocolatey
...

PS Env:\> (ls).Length
50
PS Env:\> Test-Path .\USERNAME
True
PS Env:\> Test-Path .\BOGUS
False

• Devs want Linux-like
developer experience

• NT microkernel was
originally intended to
support multiple OS

• Microsoft teamed up with
Canonical to create WSL

• It is the Ubuntu user-
space ‚syscalls’

• Much like Wine, but
implemented inside the
kernel, not user-space

• Linux ELF binaries running
on the NT kernel!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 26

Windows Subsystem for Linux

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 27

Windows Subsystem for Linux

PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

Loading personal and system profiles took 2003ms.
PS C:\Users\Matty> bash.exe
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

mnagy@MATTY-Z50-75:/mnt/c/Users/Matty$ cd
mnagy@MATTY-Z50-75:~$ cat /etc/issue
Ubuntu 16.04.1 LTS \n \l

mnagy@MATTY-Z50-75:~$ which cat
/bin/cat
mnagy@MATTY-Z50-75:~$ ldd /bin/cat

linux-vdso.so.1 => (0x00007fffde3a6000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f06be7f0000)
/lib64/ld-linux-x86-64.so.2 (0x00007f06bec00000)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 28

Windows Subsystem for Linux

PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

Loading personal and system profiles took 2003ms.
PS C:\Users\Matty> bash.exe
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

mnagy@MATTY-Z50-75:/mnt/c/Users/Matty$ cd
mnagy@MATTY-Z50-75:~$ cat /etc/issue
Ubuntu 16.04.1 LTS \n \l

mnagy@MATTY-Z50-75:~$ which cat
/bin/cat
mnagy@MATTY-Z50-75:~$ ldd /bin/cat

linux-vdso.so.1 => (0x00007fffde3a6000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f06be7f0000)
/lib64/ld-linux-x86-64.so.2 (0x00007f06bec00000)

Windows Subsystem for Linux

• sudo apt install package-from-ubuntu-repo

• It can

– Run not just command-line apps

– GUI ones like Firefox! (SSH X-forwarding to Windows)

– It actually builds* the AliRoot software suite!

• One can

– Run Linux applications locally, on a Windows machine

– Develop cross-platform apps in Windows, test Linux
conformance locally

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 29

Who doesn’t like chocolate?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 30

• Installing software from official/3rd party repositories is a
commonplace in the Linux world since... like forever.

• On Windows, one generally has to obtain installers from
each and every vendor they install software from.

• Each vendor runs a service of their own to detect out-of-
date installs and manage updates

– Waste of resources (human and machine)

• But this is all over!

Chocolatey is a package manager for Windows (like apt-get or yum but for Windows).

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 31

Who doesn’t like chocolate?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 32

• Package manager with Windows
in mind

• It is implemented in PowerShell

• Community driven repository

– Open for contribution

• Most common applications can
be easily installed with it

• Packages may be MSI, Zip,
NuGet, etc.

• https://chocolatey.org/packages

Who doesn’t like chocolate?

https://chocolatey.org/packages

Who doesn’t like chocolate?

• Installation cannot be much simpler

– In an elevated command prompt invoke the given one-liner

– What does the script do?

• iwr is an alias to Invoke-WebRequest (wget is the same alias)

• The result is passed on the pipe to Invoke-Expression

• Off-topic: how to save the script to disk?

– Instead of invoking the script, we save it to a file

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 33

PS C:\Users\Matty> iwr https://chocolatey.org/install.ps1 | iex

PS C:\Users\Matty> wget https://chocolatey.org/install.ps1 | Out-File install.ps1

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 34

• Simple commands

– List

– Search

– Info

– Install

– Upgrade

– Uninstall

– Pin

– New

– Pack

– Push

Who doesn’t like chocolate?

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 35

• Windows PowerShell 5.0: enters PackageManagement module

– It is a package manager manager

– Ability to register package sources and manage from a unified interface

Who doesn’t like chocolate?

PS C:\Users\Matty> Find-Package gnuplot

Name Version Source Summary
---- ------- ------ -------
gnuplot 4.6.6 chocolatey Gnuplot is a portable comma...

PS C:\Users\Matty> Install-Package gnuplot
PS C:\Users\Matty> gnuplot

G N U P L O T
Version 5.0 patchlevel 1 last modified 2015-06-07

gnuplot>

TYPICAL DEVELOPMENT WORKFLOW

Build systems, version control and other buzzwords

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 36

Build systems

• This topic was throroughly investigated last year, please
refer to last year’s slides as well, for a complete tour.

• What is a build system?

– A tool that takes care of building your application in the fastest
way possible with minimal user effort.

– The input is a make file, and the output is one or more
binary/ies (hopefully). 

– In a broader sense, it’s a workflow consisting of general
purpose actions to take, for eg. invoking a compiler.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 37

https://indico.kfki.hu/event/343/session/2/?slotId=0#20151123

Build systems

• Didn’t I just say „Minimal user effort”?!

– Build Systems aim at being as comfortable to use as possible

– User declares the task, instead of specifying what to do

– Declarative DSL, not imperative

• Didn’t I just say „Maximum throughput”?!

– Detects the minimal portion of the program that must be
recompiled when editing code. (Based on time stamps)

– Processes independent parts of the build tasks in parallel

• Requires learning, but pays off in the long run!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 38

CMake: Cross-platform make

• Make file generator

• Portable

• Open-source

• Knows most languages by default

• The known ones are EASY to use

• Others can be taught

• DSL script language sometimes unfriendly

• Most cross-platform projects use it

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 39

PROJECT (my_app)
LIST (SOURCES)
APPEND (SOURCES main.cpp vector.cpp)
ADD_EXECUTABLE (${PROJECT_NAME} SOURCES)

CMake+CTest+CPack = EXIT_SUCCESS

• Kitware is the company behind the CMake suite of tools

• Full-fledged scripting language to do virtually anything

– It is documented

– Gazillions of tutorials online

• Big projects using CMake suite of tools

– Bullet Physics Engine, CLion, Compiz, cURL, ROOT, GEANT4,
GROMACS, KDE, libPNG, LAPACK, LLVM, Clang, MySQL, OGRE,
OpenCV, SFML, zlib, …

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 40

Portability

• Portability is important!
– Today, you might write the code for yourself, but tomorrow you

might have to give it to a collegue
– If your code is bound to a specific OS, compiler, etc. They will be

more reluctant to use your code

• Dependencies
– The portability of code is the union of restrictions imposed by:

• Tools required to build the application
• Environment required to run the application

– Prefer portable tools over non-portable (have good reason to
defect)

– Understand the costs of depending upon external software (even
OSS)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 41

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 42

Research
project

./

Physics
library

./phys

src

./phys/src

Phys stuff

stuff.cpp

More stuff

more.cpp

inc

./phys/inc

Declarations

decl.hpp

Application

./app

src

./app/src

Main

main.cpp

inc

./app/inc

Header

header.hpp

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 43

Research project
./

Physics library
./phys

src

./phys/src

Phys stuff

stuff.cpp

More stuff

more.cpp

inc

./phys/inc

Declarations

decl.hpp

Library make file
CMakeLists.txt

Application
./app

src

./app/src

Main

main.cpp

inc

./app/inc

Header

header.hpp

Application make file
CMakeLists.txt

Top-level make file
CMakeLists.txt

Top-level CMakelists.txt

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 44

The supremum of version requirements of the script imposed by features used
cmake_minimum_required (VERSION 2.8.11)

CMakeLists files in this project can
refer to the root source directory of the project as ${RESEARCH_SOURCE_DIR}
and to the root binary directory of the project as ${RESEARCH_BINARY_DIR}.
project (RESEARCH)

Recurse into the „phys" and „app" subdirectories. This does not actually
cause another cmake executable to run. The same process will walk through
the project's entire directory structure.
add_subdirectory (phys)
add_subdirectory (app)

Library CMakelists.txt

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 45

cmake_minimum_required (VERSION 2.8.11)

Create a library called „Phys" which includes the source files „stuff.cpp” and „more.cpp”.
The extension is already found. Any number of sources could be listed here.
add_library (Phys src/stuff.cpp src/more.cpp)

Make sure the compiler can find include files for our Phys library
when other libraries or executables link to Phys
target_include_directories (Phys PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/inc)

Library CMakelists.txt

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 46

cmake_minimum_required (VERSION 2.8.11)

Add executable called „Application" that is built from the source files
„main.cpp”. The extensions are automatically found.
add_executable (Application src/main.cpp)

Make sure the compiler can find include files for our Application sources
target_include_directories (Application PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/inc)

Link the executable to the Phys library. Since the Phys library has
public include directories we will use those link directories when building
Application
target_link_libraries (Application LINK_PUBLIC Phys)

Install CMake: Ubuntu

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 47

mnagy@MATTY-Z50-75:~$ sudo apt install cmake
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
codeblocks eclipse ninja-build

The following NEW packages will be installed:
cmake

0 upgraded, 1 newly installed, 0 to remove and 22 not upgraded.
Need to get 0 B/2,623 kB of archives.
After this operation, 14.6 MB of additional disk space will be used.
Selecting previously unselected package cmake.
(Reading database ... 86023 files and directories currently installed.)
Preparing to unpack .../cmake_3.5.1-1ubuntu3_amd64.deb ...
Unpacking cmake (3.5.1-1ubuntu3) ...
Processing triggers for man-db (2.7.5-1) ...
Setting up cmake (3.5.1-1ubuntu3) ...
mnagy@MATTY-Z50-75:~$

Install CMake: Windows

• Using Chocolatey via

• Download the installer from Kitware

• When ready, using the package management framework
of PowerShell

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 48

PS C:\Users\Matty> choco install cmake

https://cmake.org/download/

FEAR OF THE UNKNOWN

„Fear leads to anger, anger leads to hate, and hate leads to… sufffferiiiiing.” –
Master Yoda

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 49

Fear of the unknown

• What exactly is an IDE?

– It is a set of tools related to various aspects of software
development that work in synergy to maximize productivity.

• What are these aspects?

– Source editing, compiling, build automating, debugging,
version controling, unit testing, benchmarking / profiling,
packaging / distributing...

• Heck, but I’m a physicist, not a software engineer

– Exactly! That is why you should care!

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 50

Integrated Development Environment

• Pro

– End-to-end automation

– Workflow is natural

– Easy to learn, „hard” to master

• Con

– Gotta cook with what you got

• The choice of IDE becomes
important

• Extensibility is important

Toolchain

• Con

– Distinct tools for everything

• One needs to interface them

– Some glitches remain

– Hard to learn, hard to master

• Get used to workflow (scripting?)

• Con

– Choose the best of everything!

Fear of the unknown

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 51

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 52

• Visual Studio Code is young

– Initial release: April 29, 2015

– Open-source: November 18, 2015

• It is cross-platform

– Windows, Linux, OSX

• Built atop JavaScript and TypeScript

• Initially a code editor

– Community pressure lead to an
open plug-in system

– Immense influx of plug-ins since

IDE for the powerusers

Installation is as easy as 1-2-3.

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 53

IDE for the powerusers

https://code.visualstudio.com

mnagy@MATTY-Z50-75:~$ sudo dpkg -i code_1.6.1-1476373175_amd64.deb

https://code.visualstudio.com/

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 54

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 55

• Sidebar

• Buttons of core
commands
reside here

– File explorer

– Search

– Git

– Debug

– Extensions

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 56

• Editor pane

• This is where
one spends
most of his/her
time

• Can be
subdivided

– Header/Source

– Diff view

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 57

• Status bar

• Shows various
informations

– Git

– Extensions

• Buttons may
reside

– Frequent
commands

IDE for the powerusers

IDE for the powerusers

• VS Code can be used as a text editor

– Simply pop open a file, save, exit

• VS Code can be used as a highly customizable IDE

– Open an entire folder

– Global settings of Code are stored in platform-specific places

– Workspace scope settings (folders opened by Code) are stored
in-place in a folder called .vs

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 58

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 59

• The Explorer button displays a tree structure of
all files inside the folder

• For fast identification of files, icon packs can be
installed in just a few clicks

– File, Preferences, File Icon Theme, Seti

– Track feature request of CMake icons (GitHub issue)

• Collapse/expand folders as you see fit

• Double-clicking a file opens it in the editor pane

IDE for the powerusers

https://github.com/jesseweed/seti-ui/issues/349

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 60

• The Search button allows to search the contents
of the files by regular expressions if needed

• Enter a pharse to find all files containing it

• Find and replace capability is invoked by the
collapse/expand triangle

• The … icon under the text box displays additional
search options

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 61

• The Extensions button let’s us:

– explore the marketplace for extensions

– manage already installed extensions

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 62

• To install an extension:

– Click the search bar

– Type the name of the extension

– Click on the button

– When it’s done, click on the button

• This tutorial will show the synergy of these:

– C/C++

– CMake

– CMake Tools

IDE for the powerusers

Install

Reload

IDE for the powerusers

• On Linux

– I assume you have g++ installed via your distributions package
manager and thus the compiler and linker are in your $PATH

• On Windows

– I assume you either have

• Visual Studio 2015 Community Edition installed

• Standalone Visual C++ Build Tools installed

– In case you want to use the legacy NMake build system, you must
launch VS Code from a developer command prompt

• Launch one of the shortcuts installed in your Start Menu

• Invoke vcvarsall.bat which sets up your environment

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 63

https://www.visualstudio.com/downloads/
http://landinghub.visualstudio.com/visual-cpp-build-tools

• Navigate to a
directory where you
want to start a new
project

• You will be greeted
with an empty
workspace

• We will use the
Quick Start feature
of CMake Tools to
initialize a simple
source file and build
script

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 64

IDE for the powerusers

• To open the
Command Palette,
either

• Ctrl+Shift+P

• Click View, then Show
Command Palette

• This will display all
the available
commands from the
core editor and all
the extensions

• Type in „CMake”

• After, select „Quick
Start”

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 65

IDE for the powerusers

• Next, it is going to
prompt for a project
name

• VSCode_test for eg.

• After giving a project
name, it is going to
ask what type of
project will this be

• Choose „Executable”

• Finally, it’s going to
as for a default build
configuration

• Choose Debug

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 66

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 67

• What happened?

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 68

• What happened?

• CMake Tools

– generated a
simple

• CMakeLists.txt
file

• main.cpp

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 69

• What happened?

• CMake Tools

– generated a
simple

• CMakeLists.txt
file

• main.cpp

– called cmake and
generated our
preferred build
systems make
files

IDE for the powerusers

CMakeLists.txt

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 70

cmake_minimum_required(VERSION 3.0.0)

project(VSCode_test VERSION 0.0.0)

include(CTest)

enable_testing()

add_executable(VSCode_test main.cpp)

set(CPACK_PROJECT_NAME ${PROJECT_NAME})

set(CPACK_PROJECT_VERSION
${PROJECT_VERSION})

include(CPack)

Main.cpp

#include <iostream>

int main(int, char**)

{

std::cout << "Hello, world!\n";

}

IDE for the powerusers

CMakeLists.txt

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 71

cmake_minimum_required(VERSION 3.0.0)

project(VSCode_test VERSION 0.0.0)

include(CTest)

enable_testing()

add_executable(VSCode_test main.cpp)

set(CPACK_PROJECT_NAME ${PROJECT_NAME})

set(CPACK_PROJECT_VERSION
${PROJECT_VERSION})

include(CPack)

Main.cpp

#include <iostream>

int main(int, char**)

{

std::cout << "Hello, world!\n";

}

IDE for the powerusers

Now press „F7”

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 72

• What happened?

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 73

• What happened?

• CMake Tools

– called cmake
which in turn
invokes our build
system

– you can see the
very same
output, as if you
had invoked
make from the
command line

IDE for the powerusers

• Next, press „F5”

• All extensions and
core features will
prompt for a
predefined task to
run when pressing
the hotkey

• On Linux

• select „C++ (GDB/LLDB)”
for GCC or Clang

• On Windows

• select „C++ (Windows)”
for MSVC

• select „C++ (GDB/LLDB)”
for Clang

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 74

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 75

• When trying to launch debug
for the first time, the
extension will not find the
executable

• In the .json config file that
pops open, specify the
location of the executable

• Default location is

IDE for the powerusers

${workspaceRoot}/build/<project_name>

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 76

• Adding a few statements to
the code makes debugging a
little more interesting

• Click on the left of the line
number where you want to
put a breakpoint

• When the application reaches
this point, execution will halt
allowing you to inspect
program state

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 77

• Pressing „F5” once again will
finally (and henceforth)
launch debugging.

• Hovering over variables in
this halted state will show
their actual value in a floating
tooltip

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 78

• Pressing „F5” once again will
finally (and henceforth)
launch debugging.

• Hovering over variables in
this halted state will show
their actual value in a floating
tooltip

• The top-center part shows
debugging controls

IDE for the powerusers

• Jump to next breakpoint (F5)

• Step over statement (F10)

• Step into statement (F11)

• Step out statement (Shift+F11)

• Restart (Ctrl+F5)

• Stop debugging (Shift+F5)

Locals

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 79

Call stack

IDE for the powerusers

IDE for the powerusers

• Git is the most common version control system used
today

• It is very useful if one wishes to

– Roll back to earlier versions of the code

– Use a functioning version while developing a new feature

– Experiment with code

– Collaborate with other people on a single codebase

• A more thorough introduction to Git can be found in last
year’s slides

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 80

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 81

• Git is so common in just about all programming
languages that Git support is a core feature in VS
Code

• Our CMake Quick Start project initially has not
been setup to be a Git repository

• We can do so by opening the Git sidebar in the
IDE

• It will tell us that this folder is not part of a
repository,

– we can make it so by clicking

IDE for the powerusers

Initialize git repository

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 82

• Next off, Git will show gazillions of files which are
staged to be commited

– This is because we went with the default CMake Tools
behavior, which is that the build directory resides
inside the same source tree that we develop in

– This is called in-source building, which is generally not
a good practice

– Ideally one configures CMake Tools to place the side-
effects and the final build in a directory outside the
source directory

– This is called out-of-source building

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 83

• Just to play along with the default behavior, we’ll
instead inform Git that we do not wish to keep
track of such files (and thus inflate our repo size
with binaries)

– Because all these files are located in a dir called „build”,
our job is as simple as it gets

– We go back to the Explorer pane and click on the „New
File” button

– When prompted for a name, say „.gitignore”

– Inside put a single line saying „build/”

– Save the file (Ctrl+s)

IDE for the powerusers

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 84

• Going back to the Git pane, now it will show only
the source files and the .vscode directory where
VS Code stores it’s project-specific configuration

– When multiple people collaborate, it is good practice to
.gitignore the .gitignore file itself too and all IDE
related files, as others might be using different IDEs

• Add a short comment to the commit that is
informative to you

• Press the ✓ button to make the commit

• Congrats, you got yourself a basic git repo!

IDE for the powerusers

IDE for the powerusers

• Most other Git commands are accessed from the Command
Palette
– Just type „git” and a list of possible commands will be filtered out

with additional help in the form of drop downs

• Check last year’s slides for typical Git workflow and scenarios
when they come in handy
– The overhead of using Git comes in handy anytime when the

project is of moderate seriousness

• For keeping code safe
– keep the repo in a folder tracked by a cloud storage vendor

– occaisonally push commits to a remote server (working/master)

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 85

Wigner Git server

11/15/2016 Lectures on Modern Scientific Computing, 2016 Budapest 86

• When you want to keep your
code confidential (in relation
to Wigner)

– Mail to admin&wigner.mta.hu

• Initially send a public rsa key

• Create repo by sending a mail

– Basic howto can be found here

• Now you may set this repo as
remote/origin and push

Public repositories

• Most popular public repo is
definately Github

– Free accounts may only have
public repos

– Use it if the code is not
confidential

• If you want the best of both
worlds, show a demo to our
admins how to setup a
private Github server

IDE for the powerusers

http://git.wigner.mta.hu/?p=git-howto.git;a=blob_plain;f=README;hb=HEAD

