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Where can we fnd compilers?

● Native languages, interpreted languages 
(bytecode, JIT), preprocessing

● Machine Learning
– TensorFlow AXL

● Big Data
– Apache Spark

● Browsers, confgurations
● GPU Drivers



  

Architecture



  

Architecture – LLVM



  

Architecture – For Real
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Why do we need other tools?

● Demo (inc.cpp, fact.cpp, loop.cpp)

● Deal with complexity
● Undefned behavior is not the problem
● No UB → fewer optimizations



  

Undefned behavior

● Demo (undefned.cpp)

● How scary it is?
● How to detect it?
● https://blog.regehr.org/archives/1520

https://blog.regehr.org/archives/1520


  

Static Analysis

● Analyze the code without running it
● Formatting
● Optimization
● Warnings
● Clang-tidy
● Clang Static Analyzer
● CppCheck



  

Clang Format Demo

● Demo (format.cpp)
● Refow comments
● Refow string literals
● Respect macros
● Respect column limits

– Tex for code
● Productivity boost



  

Warnings

● Demo (annotation.cpp)

● Warnings are helpful
● Keep your build clean!
● Utilize annotations



  

Clang Tidy Demo

● Demo (tidy.cpp)

● Code smells
● Performance problems
● Refactoring
● Modernizing



  

Clang Static Analyzer Demo

● Demo (memory.cpp)

● Deep analysis
● Takes more time than compilation
● Sources of unknown

– Conservative approach



  

CppCheck

● Demo (cppcheck.cpp)

● Easy to use
● Less precise
● Ability to describe APIs



  

Coverity Scan

● Free for open source projects
● https://scan.coverity.com

https://scan.coverity.com/


  

Dynamic Analysis

● Sanitizers
– Memory Sanitizer
– Address Sanitizer
– Thread Sanitizer
– Undefned Behaviour Sanitizer
– Bonus, if we have time

● https://www.youtube.com/watch?v=V2_80g0eOMc

https://www.youtube.com/watch?v=V2_80g0eOMc


  

Sanitizer Demo

● Demo
– memory.cpp, thread.cpp, ubsan.cpp, dead.cpp

● Run tests with sanitizers
● Have good coverage
● Not all platforms are supported
● Not all combinations are supported
● Optimizations can backfre!



  

How good is your coverage?

● Sanitizers need reasonable coverage
● Measure!
● Multiple coverage measures exists

– Line, statement, branch, condition, path, …
● SanitizerCoverage for tools
● GCC compatible GCOV coverage
● Source based coverage



  

Source Based Coverage

● No demo this time, we save time!
● Usage example

– clang++ -fprofle-instr-generate -fcoverage-mapping a.cpp
– LLVM_PROFILE_FILE="a.profraw" ./a.out
– llvm-profdata merge -sparse a.profraw -o a.profdata
– llvm-cov show ./a.out -instr-profle=a.profdata



  

Security

● Optimization + Security ?!
● Demo (memset.cpp)



  

Security!

● http://blog.quarkslab.com/clang-hardening-cheat-s
heet.html

● Checked Memory functions
– -D_FORTIFY_SOURCE=2 

● Address Space Randomization
– -fpie -pie

● Additional Protection
– -fstack-protector, -fsanitize=safe-stack, -fsanitize=cf
– -Wformat -Wformat-security -Werror=format-security

http://blog.quarkslab.com/clang-hardening-cheat-sheet.html
http://blog.quarkslab.com/clang-hardening-cheat-sheet.html


  

Fuzz Testing!

● Did we cover the critical cases?
● Generate tests to increase the coverage

– Coverage-guided, genetic algorithm
● http://llvm.org/docs/LibFuzzer.html
● Sanitizers + Fuzzing = <3
● Heartbleed within minutes

– https://www.youtube.com/watch?v=qTkYDA0En6U

http://llvm.org/docs/LibFuzzer.html
https://www.youtube.com/watch?v=qTkYDA0En6U


  

Lambda Calculus

expr =  var

           | "λ", var, ".", exp

           | expr, " ", expr

           | "(", expr, ")";
● Haskell like, dynamicly typed language

– Church, 1930
● λx.λy.x - True
● λp.λa.λb.p a b – If p Then a Else b



  

Fuzz Testing Demo

● Demo
– Lambda



  

Fuzz Testing

● Harder for multi layered application
– E.g., testing sema

● Harder to test correctness
– Semantics preserving transformation on inputs
– Behavioral equivalence

● Can use initial corpus
● The fuzzed application should be deterministic and 

preferably fast



  

PGO and LTO

● PGO use run time statistics for cost models instead of 
static estimates 
– https://clang.llvm.org/docs/UsersManual.html#profle-guided

-optimization
– Sampling needs debug symbols (at least line tables)
– Instrumentation more precise, better results, more overhead

● LTO can optimize across translation units
– https://clang.llvm.org/docs/ThinLTO.html
– https://llvm.org/docs/LinkTimeOptimization.html
– ThinLTO can scale

https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/ThinLTO.html
https://llvm.org/docs/LinkTimeOptimization.html


  

Perf

● Useful command line utility
● Find hotspots
● Find the reason of hot spots

● perf stat -B -e cache-references,cache-
misses,cycles,instructions,branches,faults,migratio
ns ./a.out

● perf record ./a.out && perf report



  

Compiler explorer

● https://godbolt.org/

https://godbolt.org/


  

Code Comprehension

● Understanding code is 
diferent activity than 
writing

● https://github.com/Eric
sson/CodeCompass

● http://modelserver.inf.
elte.hu:34540/#wsid=l
lvm

https://github.com/Ericsson/CodeCompass
https://github.com/Ericsson/CodeCompass
http://modelserver.inf.elte.hu:34540/#wsid=llvm
http://modelserver.inf.elte.hu:34540/#wsid=llvm
http://modelserver.inf.elte.hu:34540/#wsid=llvm


  

Big Picture

● Warnings on and keep the build clean
● Automate the formatting
● Use sanitizers, measure coverage
● Use static analysis tools, fx warnings
● Use refactoring tools to modernize the code
● Develop fuzzing for mission critical parts
● Run LTO and PGO on release builds only

– Might give you the performance budget for hardening!
● Track false positives, diferential view

– https://github.com/Ericsson/codechecker

https://github.com/Ericsson/codechecker


  

Thanks for the attention!
Questions?

And this is just scratching the surface! :)
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