
Beyond The Compiler:
Advanced Tools for 
Better Productivity
Gábor Horváth (xazax.hun@gmail.com)



  

Where can we fnd compilers?

● Native languages, interpreted languages 
(bytecode, JIT), preprocessing

● Machine Learning
– TensorFlow AXL

● Big Data
– Apache Spark

● Browsers, confgurations
● GPU Drivers



  

Architecture



  

Architecture – LLVM



  

Architecture – For Real

Common Libraries

Compiler

Static Analyzer

Runtime Components

Dynamic Analysis

Formatter

Documentation
Generator

Hardening

Fuzzing

Coverage
Refactoring

Debugger



  

Why do we need other tools?

● Demo (inc.cpp, fact.cpp, loop.cpp)

● Deal with complexity
● Undefned behavior is not the problem
● No UB → fewer optimizations



  

Undefned behavior

● Demo (undefned.cpp)

● How scary it is?
● How to detect it?
● https://blog.regehr.org/archives/1520

https://blog.regehr.org/archives/1520


  

Static Analysis

● Analyze the code without running it
● Formatting
● Optimization
● Warnings
● Clang-tidy
● Clang Static Analyzer
● CppCheck



  

Clang Format Demo

● Demo (format.cpp)
● Refow comments
● Refow string literals
● Respect macros
● Respect column limits

– Tex for code
● Productivity boost



  

Warnings

● Demo (annotation.cpp)

● Warnings are helpful
● Keep your build clean!
● Utilize annotations



  

Clang Tidy Demo

● Demo (tidy.cpp)

● Code smells
● Performance problems
● Refactoring
● Modernizing



  

Clang Static Analyzer Demo

● Demo (memory.cpp)

● Deep analysis
● Takes more time than compilation
● Sources of unknown

– Conservative approach



  

CppCheck

● Demo (cppcheck.cpp)

● Easy to use
● Less precise
● Ability to describe APIs



  

Coverity Scan

● Free for open source projects
● https://scan.coverity.com

https://scan.coverity.com/


  

Dynamic Analysis

● Sanitizers
– Memory Sanitizer
– Address Sanitizer
– Thread Sanitizer
– Undefned Behaviour Sanitizer
– Bonus, if we have time

● https://www.youtube.com/watch?v=V2_80g0eOMc

https://www.youtube.com/watch?v=V2_80g0eOMc


  

Sanitizer Demo

● Demo
– memory.cpp, thread.cpp, ubsan.cpp, dead.cpp

● Run tests with sanitizers
● Have good coverage
● Not all platforms are supported
● Not all combinations are supported
● Optimizations can backfre!



  

How good is your coverage?

● Sanitizers need reasonable coverage
● Measure!
● Multiple coverage measures exists

– Line, statement, branch, condition, path, …
● SanitizerCoverage for tools
● GCC compatible GCOV coverage
● Source based coverage



  

Source Based Coverage

● No demo this time, we save time!
● Usage example

– clang++ -fprofle-instr-generate -fcoverage-mapping a.cpp
– LLVM_PROFILE_FILE="a.profraw" ./a.out
– llvm-profdata merge -sparse a.profraw -o a.profdata
– llvm-cov show ./a.out -instr-profle=a.profdata



  

Security

● Optimization + Security ?!
● Demo (memset.cpp)



  

Security!

● http://blog.quarkslab.com/clang-hardening-cheat-s
heet.html

● Checked Memory functions
– -D_FORTIFY_SOURCE=2 

● Address Space Randomization
– -fpie -pie

● Additional Protection
– -fstack-protector, -fsanitize=safe-stack, -fsanitize=cf
– -Wformat -Wformat-security -Werror=format-security

http://blog.quarkslab.com/clang-hardening-cheat-sheet.html
http://blog.quarkslab.com/clang-hardening-cheat-sheet.html


  

Fuzz Testing!

● Did we cover the critical cases?
● Generate tests to increase the coverage

– Coverage-guided, genetic algorithm
● http://llvm.org/docs/LibFuzzer.html
● Sanitizers + Fuzzing = <3
● Heartbleed within minutes

– https://www.youtube.com/watch?v=qTkYDA0En6U

http://llvm.org/docs/LibFuzzer.html
https://www.youtube.com/watch?v=qTkYDA0En6U


  

Lambda Calculus

expr =  var

           | "λ", var, ".", exp

           | expr, " ", expr

           | "(", expr, ")";
● Haskell like, dynamicly typed language

– Church, 1930
● λx.λy.x - True
● λp.λa.λb.p a b – If p Then a Else b



  

Fuzz Testing Demo

● Demo
– Lambda



  

Fuzz Testing

● Harder for multi layered application
– E.g., testing sema

● Harder to test correctness
– Semantics preserving transformation on inputs
– Behavioral equivalence

● Can use initial corpus
● The fuzzed application should be deterministic and 

preferably fast



  

PGO and LTO

● PGO use run time statistics for cost models instead of 
static estimates 
– https://clang.llvm.org/docs/UsersManual.html#profle-guided

-optimization
– Sampling needs debug symbols (at least line tables)
– Instrumentation more precise, better results, more overhead

● LTO can optimize across translation units
– https://clang.llvm.org/docs/ThinLTO.html
– https://llvm.org/docs/LinkTimeOptimization.html
– ThinLTO can scale

https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/ThinLTO.html
https://llvm.org/docs/LinkTimeOptimization.html


  

Perf

● Useful command line utility
● Find hotspots
● Find the reason of hot spots

● perf stat -B -e cache-references,cache-
misses,cycles,instructions,branches,faults,migratio
ns ./a.out

● perf record ./a.out && perf report



  

Compiler explorer

● https://godbolt.org/

https://godbolt.org/


  

Code Comprehension

● Understanding code is 
diferent activity than 
writing

● https://github.com/Eric
sson/CodeCompass

● http://modelserver.inf.
elte.hu:34540/#wsid=l
lvm

https://github.com/Ericsson/CodeCompass
https://github.com/Ericsson/CodeCompass
http://modelserver.inf.elte.hu:34540/#wsid=llvm
http://modelserver.inf.elte.hu:34540/#wsid=llvm
http://modelserver.inf.elte.hu:34540/#wsid=llvm


  

Big Picture

● Warnings on and keep the build clean
● Automate the formatting
● Use sanitizers, measure coverage
● Use static analysis tools, fx warnings
● Use refactoring tools to modernize the code
● Develop fuzzing for mission critical parts
● Run LTO and PGO on release builds only

– Might give you the performance budget for hardening!
● Track false positives, diferential view

– https://github.com/Ericsson/codechecker

https://github.com/Ericsson/codechecker


  

Thanks for the attention!
Questions?

And this is just scratching the surface! :)


	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30

